Question		Answer	Marks	AO	Guidance	
12	(a)	$0 = (39\sin\theta)^2 + 2(-10)h$	M1	3.3	Using $v^2 = u^2 + 2as$ with $v = 0$, $a = \pm 10$ or ± 9.8 or $\pm g$, and $u = 39 \sin \theta$ or $u = 39 \cos \theta$. Accept any other complete method (using correct suvat equations) to find the maximum height e.g. $0 = 39 \sin \theta - 10t$ and with t then substituted into $s = (39 \sin \theta)t + 0.5(-10)t^2$	Condone <i>g</i> = 9.8 for full marks in (a) and (b)
		$0 = \left(39 \times \frac{5}{13}\right)^2 + 2(-10)h$	A1	1.1	A correct equation with the correct value of sin substituted or for $0 = (39\sin(22.6))^2 + 2(-10)h$	Allow using g (and not replaced with 10 or 9.8) for this A mark
		Max. height = $20 + h = 31.25$ (m)	A1	2.2a	 www accept awrt 31.2 (using 22.6 as the angle and g = 10) accept awrt 31.5 (coming from exact value of sin or 22.6 and g = 9.8) condone 31.3 (3 sf) 	
			[3]			

Question		Answer	Marks	AO	Guidance	
12	(b)	$-20 = (39\sin\theta)T + \frac{1}{2}(-10)T^2$	M1	3.3	Applying $s = ut + \frac{1}{2}at^2$ with $s = \pm 20$, $a = \pm 10$ or ± 9.8 or $\pm g$ and $u = 39\sin\theta$ or $u = 39\cos\theta$	Condone g = 9.8 for full marks in (a) and (b) Accept any other complete method to find <i>T</i>
		$-20 = \left(39 \times \frac{5}{13}\right)T + \frac{1}{2}(-10)T^2$	A1	1.1	With correct value of sine or sin(22.6) Allow $-20 = \left(39 \times \frac{5}{13}\right)T + \frac{1}{2}(-9.8)T^2$	Allow using <i>g</i> (and not replaced with 10 or 9.8) for this A mark
		T = 4 only	A1	1.1	 BC accept awrt 4.07 (using g = 9.8 and exact value of sine) accept awrt 4.06 (using g = 9.8 and 22.6) a value of 4(.00) coming from 3.998 (using g = 10 and 22.6 for sine) 	Condone <i>t</i> = 4
			[3]			

Question		Answer	Marks	AO	Guidance
12	(c)	 Examples of possible limitations The ball will have dimensions/volume The spin/rotational forces of the ball A 1sf approx. to g was used Other weather conditions (ignore wind and air resistance) The ball is not a particle g is modelled as a (universal) constant 	B1	3.5b	 Allow any correct limitation B0 if referring to Air resistance and/or wind (only) The ground is unlikely to be horizontal (only) The mass or weight or shape of <i>P</i> (only) The angle/heights/speeds may not be as quoted (only) Modelling the problem as 3D rather than in 2D (only) If multiple limitations given, and any are incorrect, then B0
			[1]		

Question		Answer	Marks	AO	Guidance	
12	(d)	$a = 3kt^2 + 12t + \frac{3}{2}$	M1	3.4	Differentiate given <i>v</i> (at least two terms correct)	
		$BC = \left(39 \times \frac{12}{13}\right)'T' \ (=144)$	M1*	3.1b	Applying $s = ut$ horizontally to find distance <i>BC</i> with correct value of cos (or cos(22.6)) and their value of <i>T</i> from (b)	Allow $g = 9.8$ which if correct leads to 146.34
		$s = \frac{1}{4}kt^4 + 2t^3 + \frac{3}{4}t^2 (+c)$	M1*	2.1	Integrate given <i>v</i> (at least two terms correct)	
		$\frac{1}{4}k(4)^4 + 2(4)^3 + \frac{3}{4}(4)^2 = 144$	M1dep*	3.4	Puts their integrated expression for <i>s</i> , with $t =$ their <i>T</i> from (b), equal to their distance for <i>BC</i> to form an equation in <i>k</i> only – dependent on the two previous M marks only	Must not include a $+c$ unless dealt with as part of a definite integral. However, if a $+c$ is included then subsequently ignored/set equal to zero without justification then give bod for this and any subsequent A marks (if earned)
		$k = \frac{1}{16}$	A1	1.1	Correct exact value for k (oe e.g. 0.0625)	Final two marks can only be awarded if $g = 10$ used
		$a = 52.5 (\mathrm{m s}^{-2})$	A1	2.2a	oe	
			[6]			