Question		Answer	Marks	AO	Guidance		
SEE APPENDIX AT THE END OF THE MS FOR IMPORTANT INFORMATION REGARDING THIS PART							
13	(a)		M1*	2.1	Applying N2L parallel to the plane for P – correct number of terms and weight component resolved – allow sign errors and sin/cos confusion. Allow g missing but M0 if 4ga in N2L	For the first five marks condone: μ used as the coefficient of friction for both <i>P</i> and <i>B</i> , or implying that $\mu_B = 2\mu_P$ rather than the correct $\mu_P = 2\mu_B$	
		$4g\sin 60 - F_P - T = 4a$	A1	1.1	NB $T + F_P - 4g \sin 60 = 4a$ is A1 (taking up the plane as +ve dir.)	Where F_P is the frictional force for P	
		$R_P = 4g\cos 60$	B1	3.3	Resolving correctly perpendicular to the plane for <i>P</i>	Where R_P is the normal contact force for P	
		$4g\sin 60 - \mu_P(4g\cos 60) - T = 4a$ $\Rightarrow 2\sqrt{3}g - 2\mu_Pg - T = 4a$	M1dep*	3.4	Use of $F = \mu R$ in the attempt at N2L for <i>P</i> with their <i>R</i> which must be a component of 4 <i>g</i> only	Where μ_P is the coefficient of friction between <i>P</i> and the plane	
		$T - \mu_B(2g) = 2a$	M1	3.3	Applying N2L parallel to the surface for <i>B</i> – correct number of terms – allow sign errors but note that $\mu_B(2g) - T = 2a$ is consistent with $T + F_P - 4g \sin 60 = 4a$ and therefore gives the correct answer (and is not incorrect working)	Where μ_B is the coefficient of friction between <i>B</i> and the plane Allow <i>g</i> missing but M0 if 2ga in N2L or for $T - F_B = 2a$ only	
		$2\sqrt{3}g - 2\mu_P g - T = 4a$ and $2T - 4\mu_B g = 4a$ with $\mu_P = 2\mu_B$ gives $2\sqrt{3}g - T = 2T$	A1	3.3	Solving simultaneously with $\mu_P = 2\mu_B$ (soi) to obtain a correct equation in <i>T</i> only		

Question	Answer	Marks	AO	Guidance	
13(b)	$1.9 = 2(0.5) + \frac{1}{2}a_P(0.5)^2$	B 1	3.4	Applying $s = ut + \frac{1}{2}at^2$ correctly to	
				find a_P	
	$a_P = 7.2$	B 1	1.1		
	$4g\sin 60 - \mu_P(4g\cos 60) = 4a_P$	M1	3.1b	Set $T = 0$ (or apply N2L) to obtain an expression for the acceleration of <i>P</i> when the string breaks	Correct number of terms, dimensionally correct (so g not missing), must be using the correct mass of 4 – allow sin/cos mix and sign errors only
	$\mu_P = 0.26266 \Rightarrow \mu_B = 0.13(1)$	A1	3.4	Using their acceleration of P to correctly calculate the coefficient of friction for B . Can be implied from a correct deceleration of B . Accept 0.13 (so 2 sf) or better	For reference: exact value is $\frac{-72+49\sqrt{3}}{98}$ (which scores A1)
	$a_B = -\mu_B g \Rightarrow$ deceleration is 1.29 (m s ⁻²)	A1	3.2a	Accept awrt 1.29 or -1.29	1.28704895 or, for reference, exact value is $\frac{-72+49\sqrt{3}}{10}$ (which scores A1)
		[5]			

APPENDIX	(To	assist	with	13a
----------	-----	--------	------	------------

Exemplar responses for Q13(a) – see main MS for Guidance for the requirements/conditions to award each of these marks							
Response				Max. Mark			
Case 1: candidates who immediately set μ as the coefficient of friction for B and 2μ as the coefficient of friction for P (correct)							
$4g\sin 60 - F_P - T = 4a$	M1 A1						
$R_P = 4g\cos 60$	B1						
$4g\sin 60 - 2\mu(4g\cos 60) - T = 4a$ M	1						
$T - \mu(2g) = 2a$	M1						
$2\sqrt{3}g - T = 2T$	A1						
$T = \frac{2\sqrt{3}}{3}g$	1						
Or equivalent e.g. replace 2μ above	with μ and μ above with 0.5,	μ					
Case 2: candidates who immediately s	set 2μ as the coefficient of frict	ion for <i>B</i> and μ as the coefficient of friction for <i>P</i> or	r set both	5			
coefficients of frictions equal to μ (b)	ooth of these are incorrect)						
$4g\sin 60 - F_P - T = 4a$	M1 A1	$4g\sin 60 - F_P - T = 4a$	M1 A1				
$R_P = 4g\cos 60$	B1	$R_P = 4g\cos 60$	B1				
$4g\sin 60 - \mu(4g\cos 60) - T = 4a$	M1	$4g\sin 60 - \mu(4g\cos 60) - T = 4a$	M1				
$T - 2\mu(2g) = 2a$	M1	$T - \mu(2g) = 2a$	M1				
$4g\sin 60 - 4g\mu\cos 60 - T = 2T - 8\mu_8$	g A0 A0	$4g\sin 60 - 4g\mu\cos 60 - T = 2T - 4\mu_{z}$	g A0 A0				
Case 3: assuming that as $\mu_P = 2\mu_R$ the	en this implies that $F_p = 2F_{pW}$	ithout justification (e.g. no calculation of the normal	contact	3			
forces for P and B considered – so wh	ile it turns out to be correct in th	is case it is not true in general) – if this is assumed th	en				
	N/1 A 1						
$4g\sin 60 - 2F - T = 4a$	MI AI	the array the arch in the main MC this would have been					
I - F = 2a IVIT (so now allow this M mark even though in the main MS this would have been M0)							
leading to $2g\sqrt{3} - 2(T-2a) - T = 4$	$4a$ and therefore $T = \frac{2\sqrt{3}}{3}g$ no f	urther marks (3 marks max. also if assuming that $2F$	$F_P = F_B$)				

