| 10 | A particle P of mass $m \log i$ is moving on a smooth horizontal surface under the action of two constant horizontal forces $(-4\mathbf{i}+2\mathbf{j})N$ and $(a\mathbf{i}+b\mathbf{j})N$. The resultant of these two forces is $\mathbf{R}N$ is given that \mathbf{R} acts in a direction which is parallel to the vector $-\mathbf{i}+3\mathbf{j}$. | t horizontal forces $(-4\mathbf{i}+2\mathbf{j})$ N and $(a\mathbf{i}+b\mathbf{j})$ N. The resultant of these two forces is R N. It | | |----|--|---|--| | | (a) Show that $3a + b = 10$. | [3] | | | | It is given that $a = 6$ and that P moves with an acceleration of magnitude $5\sqrt{10}\mathrm{ms^{-2}}$. | | | | | (b) Determine the value of m . | [4] | |