Question		n	Answer	Marks	AO	Guidance	
6			$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x + k + 4x^{-2}$	M1	1.1a	Attempt to differentiate	Power decreases by 1 for at
			dx				least 2 terms
			$\frac{dy}{dx} = 2x + k + 4x^{-2}$ $2(-2) + k + 4(-2)^{-2} = 0$	M1	3.1a	Substitute $x = -2$, equate to 0 and	
						attempt to solve	
			k=3	A1	1.1		
			$\frac{d^2 y}{dx^2} = 2 - 8x^{-3}$				
			$\frac{d}{dx^2}$ - 2 - 8x				
			$2 - 8x^{-3} = 0$	M1	3.1a	Equate second derivative to 0 and	
						attempt to solve	
			$x = 4^{\frac{1}{3}}$	A1	1.1		
			for $x < 4^{\frac{1}{3}} \Rightarrow \frac{d^2 y}{dx^2} < 0$ for $x > 4^{\frac{1}{3}} \Rightarrow \frac{d^2 y}{dx^2} > 0$	E 1	2.1	Consider convex/concave either side	
			for $x < 4^{\frac{3}{3}} \Rightarrow \frac{d^{3}y}{dx^{2}} < 0$			of $x = 4^{\frac{1}{3}}$ and conclude	
			A^2			or $x = 4^{\circ}$ and conclude	
			for $x > 4^{\frac{1}{3}} \Rightarrow \frac{d^{2}y}{dx^{2}} > 0$				
						,	
			When $x = 4^{\frac{1}{3}}, \frac{dy}{dx} \neq 0$ hence not a stationary point	E 1	2.1	Consider gradient at $x = 4^{\frac{1}{3}}$, or	
			dx	E1	4.1	justify that $x = -2$ is the only	
						stationary point	
				[7]			
				[/]			