Question		n	Answer	Marks	AO	Guidance	
8	(a)		DR				
			$BE = \sqrt{3}$ from the standard triangle <i>BDE</i>	B1	2.2a	Or $AB = 1 + \sqrt{3}$ seen	B0 for decimal
			$BC = AB\cos 45$	M1	2.1	oe or Pythagoras' theorem	Must be seen
			$BC = \frac{1 + \sqrt{3}}{\sqrt{2}} = \frac{\sqrt{2} + \sqrt{6}}{2}$	E1	2.2a	AG	$\frac{1+\sqrt{3}}{\sqrt{2}}$ must be seen
				[3]			
8	(b)		DR				
			Triangle ABC is isosceles so $BC = AC$ but	B1	2.4	State or imply that $BC = AC$ and	
			$AC = CD + \sqrt{2}$			state $AC = CD + \sqrt{2}$	
			so $CD = \frac{\sqrt{2} + \sqrt{6}}{2} - \sqrt{2}$	M1	2.1	Obtain expression for <i>CD</i> , may be unsimplified	M0 if decimals seen
			$=\frac{\sqrt{6}-\sqrt{2}}{2}$				
			$\sin 15 = \frac{CD}{BD} = \frac{\sqrt{6} - \sqrt{2}}{2} \div 2 = \frac{\sqrt{6} - \sqrt{2}}{4}$	A1	2.2a	Obtain expression for sin15 and simplify to answer given	SC1 for showing using addition formula
				[3]			