5	(i)	h = 2	B1	1.1	Е		
		$h \begin{bmatrix} 1 & 1 & 2 & 1 \end{bmatrix}$	M1	2.1	Е	Use of correct formula with correct	Condone one error
		$\frac{h}{2} \left[\frac{1}{2} + \frac{1}{4} + 2 \left(\frac{1}{2 + \sqrt{2}} \right) \right]$				(exact) y-values with their h	in values
		$I \approx \frac{3}{2} + \frac{2}{2}$	A1	1.1	С		
		$I \approx \frac{3}{4} + \frac{2}{2 + \sqrt{2}}$					
		$(2-\sqrt{2})$ $2-\sqrt{2}$	M1	3.1 a	Е	Correct method for rationalising the	
		$\frac{1}{2+\sqrt{2}} = \frac{1}{(2+\sqrt{2})(2-\sqrt{2})} = \frac{1}{2}$				denominator of their surd together with correct simplification	
		$I \approx \frac{3}{4} + \left(2 - \sqrt{2}\right) = \frac{11}{4} - \sqrt{2}$	A1	2.2a	Α	$\mathbf{A}\mathbf{G}$ – at least one step of intermediate	Must be convincing
		$I \approx -+(2-\sqrt{2}) = -\sqrt{2}$	[5]			working (from application of	as AG
						trapezium rule to given result)	

Question		n	Answer	Marks	AO		Guidance	
5	(ii)		$x = u^2 \Longrightarrow dx = 2u du$	M1*	3.1a	Е	An attempt at integration by sub -	Limits not required
							allow any genuine attempt (as a	for first four marks
							minimum must differentiate their sub.	
							and remove all x 's)	
			$\int_{0}^{4} \frac{\mathrm{d}x}{2 + \sqrt{x}} = \int_{0}^{2} \frac{2u}{2 + u} \mathrm{d}u$	A1	1.1	С	Correct integral in terms of <i>u</i>	
			$J_0 2 + \sqrt{x} J_0 2 + u^{cm}$					
			$2f^{2} + u - 2$, $2f^{2} + u - 2$,	Dep*M1	2.1	С	Re-writes integral in the form	Or use $t = 2 + u$ to
			$= 2\int_0^2 \frac{2+u-2}{2+u} du = 2\int_0^2 1 - \frac{2}{2+u} du$				c b	obtain integral of
							$\int a + \frac{b}{1+u} du$	b_{1}
								the form $\int a + \frac{b}{t} dt$
			$=2\left[u-2\ln\left(2+u\right)\right]_{0}^{2}$	A1ft	1.1	А	Correctly integrates their $\int a + \frac{b}{1+u} du$	$\int_{2} \frac{4}{1}$
			$=2\left[u-2\ln(2+u)\right]_{0}$				Correctly integrates their $\int a + \frac{1}{1+u} du$	$\int \frac{2dt}{t}$
								$= 2t - 4 \ln t$
			$= 2 \left\{ \left(2 - 2\ln(2+2) \right) - \left(0 - 2\ln(2+0) \right) \right\}$	M1	1.1	С	Uses correct limits correctly	
			$=2\left((2 - 2 \ln(2 + 2)) - (0 - 2 \ln(2 + 0))\right)$				(dependent on both previous M marks)	
			$=2(2-2\ln 2)$	A1	2.2a	Α	oe e.g. $4 - 4 \ln 4 + 4 \ln 2$	
				[6]				
				[•]				
5	(iii)		11 $(2 - 2(2 - 2))$	M1	1.1a	С	Setting the given result approx. equal	
			$\frac{11}{4} - \sqrt{2} \approx 2\left(2 - 2\ln 2\right)$				to their (ii)	
			$\ln 2 \approx \frac{5}{16} + \frac{\sqrt{2}}{4}$	A1	2.2a	Α	$k = \frac{5}{16}$	
			$\ln 2 \approx \frac{1}{16} + \frac{1}{4}$	[2]			16	