
3	(a)	$f(x) = 2\left[x^{2} + 3x\right] = 2\left[(x + \frac{3}{2})^{2} - \left(\frac{3}{2}\right)^{2}\right]$	M1	3.1a	Attempt to complete the square – must have $2(x+\frac{3}{2})^2 \pm$	Or $f'(x) = 4x + 6$ and solves equal to zero Or finds <i>x</i> -coordinate of vertex
		$f(x) = 2\left(x + \frac{3}{2}\right)^2 - \frac{9}{2} \Longrightarrow -\frac{9}{2}$	A1	1.1	Correct completing the square and selection of $-\frac{9}{2}$	Or by differentiation
		Range of $f(x)$: $f(x) \ge -\frac{9}{2}$	A1	1.2	cao – or equivalent notation e.g. set notation $\{f(x): f(x) \ge -\frac{9}{2}\}$ or $\left[-\frac{9}{2}, \infty\right)$	Allow in terms of f, y but not x
			[3]			
3	(b)	Function is not one-one	B1	2.4	Or different <i>x</i> -values give the same <i>y</i> -value (oe) e.g. function is many-one	
			[1]			
3	(c)	$g^{-1}(a) = \frac{1}{3}(a-2)$	B1	1.1	Or in terms of <i>x</i>	Or $a = gfg(-2)$ (or $x =$)
		$fg(-2) = f(-4) \left[= 2(-4)^2 + 6(-4) \right]$	M1*	1.2	Correct order of operations for fg so $f(-4)$ is sufficient	a = gf('-4')
		$8 = \frac{1}{3}(a-2) \implies a = \dots$	M1dep*	1.1	Sets their $fg(-2)$ equal to correct $g^{-1}(a)$ and solves for <i>a</i> or <i>x</i>	a = g('8')
		<i>a</i> = 26	A1	2.2a	Condone $x = 26$	
			[4]			
3	(d)	$2x^2 + 6x > 3x + 2 \Longrightarrow 2x^2 + 3x - 2 > 0$	M1	1.1	Sets $f(x) > g(x)$ and rearranges correctly and solves equality (giving two c.v.)	Can be implied by both c.v. stated correctly
		Critical values $\frac{1}{2}$, -2	A1	1.1		
		${x:x > \frac{1}{2}} \cup {x:x < -2}$	A1	2.5	Correct set notation e.g. $(-\infty, -2) \cup (\frac{1}{2}, \infty)$ but not $x > \frac{1}{2}$ or x < -2	

