					Attempts to differentiate y with respect to t using the product rule – answer of	
5	(a)	$\frac{dy}{dt} = 3t^2 e^{-2t} + t^3 \left(-2e^{-2t}\right)$	M1*	2.1	the form $\frac{dy}{dt} = \lambda t^2 e^{-2t} + \mu t^3 e^{-2t}$	Where $\lambda, \mu \neq 0$
					or $y' = \alpha x^{-5} e^{-6x^{-1}} (\beta x + \gamma)$	Where $\alpha, \beta, \gamma \neq 0$
		$\frac{\mathrm{d}y}{\mathrm{d}t} = 0 \Longrightarrow t^2 \mathrm{e}^{-2t} (3 - 2t) = 0 \Longrightarrow t = \dots$	M1dep*	1.1	Sets their derivative equal to zero and solves for <i>t</i>	Or their $\frac{dy}{dx}$ set = 0 and solve for x
		$t = \frac{3}{2}$	A1	1.1	From correct working only (or for $x = 2$)	
		$P\left(2,\frac{27}{8}e^{-3}\right)$	A1	2.2a	From correct working only y-coordinate must be exact but ISW	
			[4]			
5	(b)	$\frac{\mathrm{d}x}{\mathrm{d}t} = -3t^{-2}$ and $\int y \frac{\mathrm{d}x}{\mathrm{d}t} \mathrm{d}t$	M1	2.1	Differentiates x with respect to t and attempts to set up integral for the required area	With $\frac{dx}{dt} = kt^{-2}$ with non-zero k
		$x = 6 \Longrightarrow t = 0.5$ and $x = 1 \Longrightarrow t = 3$	B1	1.1	Stating 0.5 and 3 is sufficient for this mark	If not attempted in (b) then this B mark can be awarded if seen in (c)
		Area = $\int_{3}^{0.5} t^3 e^{-2t} \left(-\frac{3}{t^2} \right) dt = \int_{3}^{0.5} -3t e^{-2t} dt = \int_{0.5}^{3} 3t e^{-2t} dt$	A1	2.2a	Must be correctly shown	
			[3]			

5	(c)	$u = 3t$, and dv or $\frac{dv}{dt} = e^{-2t}$	M1*	1.1	Integrating by parts as far as $f(t) \pm \int g(t) dt$	Ignore limits for first three marks and allow those who consider $-\int 3te^{-2t} dt$ for possibly full marks
		$\int 3t e^{-2t} dt = -\frac{3}{2}t e^{-2t} + \frac{3}{2} \int e^{-2t} dt$	A1	1.1		
		$= \dots - \frac{3}{4} e^{-2t} (+c)$	A1	1.1	Allow correct un-simplified for both A marks	
		$\left[-\frac{3}{2}te^{-2t} - \frac{3}{4}e^{-2t}\right]_{0.5}^{3} = \left(-\frac{3}{2}(3)e^{-6} - \frac{3}{4}e^{-6}\right) \\ - \left(-\frac{3}{2}(0.5)e^{-1} - \frac{3}{4}e^{-1}\right)$	M1dep*	1.1	Use of their <i>t</i> -limits (so not 1 and 6) in fully integrated expression (must subtract bottom limit from top limit)	
		Area = $-\frac{21}{4}e^{-6} + \frac{3}{2}e^{-1}$	A1	2.2a	ISW once correct exact answer seen	
			[5]			