Question	Answer	Marks	AO	Guidance	
3	2 + 2d = 2r	B1	1.1	Or for $a+2d = ar$	
	$2+12d = 2r^2$	B1	1.1	Or for $a+12d = ar^2$	
	$1+6d = (1+d)^2$ or $2+12d = 2(1+d)^2$	M1*	1.1	Setting up an equation in d or r only – dependent on one B mark	$2+12(r-1)=2r^2$
	$d^2 - 4d = 0 \Longrightarrow d = \dots$	M1dep*	1.1	Solving their two-term quadratic equation in d (or three-term quadratic in r)	$r^{2}-6r+5=0$ (r-5)(r-1)=0 \Rightarrow r=
	d = 4 and as the common difference is positive the progression is an increasing sequence	A1	2.4	Correct value for d and link to increasing sequence – must either say that d is positive (oe) or state at least the correct first four terms and comment that they are increasing	Condone no mention of $d \neq 0$
		[5]			
	Alternative method				
	$\left(\frac{u_3}{u_2}\right) = \frac{2+12d}{2+2d}$	B1		or for $\frac{u_3}{u_1}$	
	$\left(\frac{u_2}{u_1}\right) = \frac{2+2d}{2}$	B1			
	$\frac{2+12d}{2+2d} = \frac{2+2d}{2}$	M1*		Setting up an equation in d only – dependent on one B mark	
	$d^2 - 4d = 0 \Longrightarrow d = \dots$	M1dep*		Solving their two-term quadratic equation in <i>d</i>	
	d = 4 and as the common difference is positive the progression is an increasing sequence	A1		As above	