Question		on	Answer	Marks	AO	Guidance	
8	(a)			M1*	2.1	Differentiates y with respect to $x -$ answer of the form $\pm e^{-2x} \pm \lambda x e^{-2x}$	$\lambda \neq 0$
			$y' = \mathrm{e}^{-2x} \left(1 - 2x \right)$	A1	1.1		
			$y'' = \mathrm{e}^{-2x} \left(-4 + 4x \right)$	A1ft	1.1	Follow through their first derivative	
				M1dep*	3. 1a	Solves $y'' = 0$ (or attempts to verify y'' = 0 by substituting $x = 1$) or considers sign change either side of y''	
			$y'' = 0$ at $x = 1$ and $y''(0.5) = -2e^{-1} < 0$, $y''(1.5) = 2e^{-3} > 0$ (so change of sign indicates a point of inflection at $x = 1$)	A1 [5]	2.2a	Conclusion not required for this mark	
8	(b)		$\int x e^{-2x} dx = -\frac{1}{2} x e^{-2x} + \frac{1}{2} \int e^{-2x} dx$	M1*	2.1	Integration by parts – of the form $\pm \alpha x e^{-2x} \pm \beta \int e^{-2x} dx$	Where $\alpha, \beta = 2, \frac{1}{2}$
			$\int x e^{-2x} dx = -\frac{1}{2} x e^{-2x} - \frac{1}{4} e^{-2x}$	A1	1.1		
			$\int_{0}^{1} x e^{-2x} dx = \left[-\frac{1}{2} x e^{-2x} - \frac{1}{4} e^{-2x} \right]_{0}^{1}$ $= \left(-\frac{1}{2} e^{-2} - \frac{1}{4} e^{-2} \right) - \left(0 - \frac{1}{4} \right)$	M1dep*	1.1	Use of correct limits in their fully integrated expression – need not be simplified (or equivalent)	
			$\frac{1}{4} - \frac{3}{4}e^{-2}$	A1	1.1	Allow unsimplified	
			Area of triangle below $OP = \frac{1}{2}e^{-2}$	B1	1.1	Or by correctly evaluating $\int_0^1 e^{-2} x dx$	Allow unsimplified
			$=\frac{1}{4}(1-5e^{-2})$	A1	2.2 a	a = 1, b = -5 (must be in this form)	
				[6]			