Question		Answer	Marks	AO	Guidance	
4	(a)	GP: $x, \frac{15}{y}, z \Rightarrow \frac{\frac{15}{y}}{x} = \frac{z}{\frac{15}{y}}$	M1*	3.1 a	r = so allow this mark for stating	Or for the terms of the GP as $y+4, \frac{15}{y}, y-4$ in y only
		AP: $x, y, z \Rightarrow y - x = -4$ or $z - y = -4$	M1*	1.1	WI for $y - x = \pm 4$ or $z - y = \pm 4$ or $z - y = \pm 4$ or	Or for the terms of the AP as $y+4$, y , $y-4$ in y only
					For reference: $xy^2z = 225$, $x = y + 4$ and $z = y - 4$	
		$(y+4)y^{2}(y-4) = 225$	M1dep*	1.1	Eliminate x and z to form an equation in y only (must be equivalent to a quartic in y)	Or for $\frac{y-4}{\frac{15}{y}} = \frac{\frac{15}{y}}{y+4}$ $\left(\Rightarrow y^2 - 16 = \frac{225}{y^2}\right)$
		$y^{2}(y^{2}-4y+4y-16) = 225 \Rightarrow y^{4}-16y^{2}-225 = 0$	A1 [4]	2.2a	AG so sufficient working must be shown www – note that $y = x + 4$ and y = z - 4 (from $d = +4$) can lead to the correct equation (which can score the M marks only)	

Question		on	Answer	Marks	AO	Guidance	
4	(b)		$y^4 - 16y^2 - 225 = 0 \Rightarrow y = \pm 5$ but $y > 0 \Rightarrow y = 5$	B1	1.1	BC Allow implied e.g. $y = \pm 5$ then using $y = 5$ only (B0 if the sum to infinity for other values of y are not rejected)	x = 9, z = 1
			$\Rightarrow r^2 = \frac{z}{x} = \frac{1}{9} \Rightarrow r = \frac{1}{3}$	M1	1.1	allow unsimplified e.g. $r = \frac{cr(r)}{15}$ and	Possibly done implicitly in formula for S_{∞}
			$S_{\infty} = \frac{x}{1-r} = \frac{9}{\frac{2}{3}}$	M1	1.1	Using the correct formula for the sum to infinity of a GP with their value of x (= their $y \pm 4$) and a value of r where $-1 < r < 1$	
			$S_{\infty} = 13.5$	A1	1.1	cao oe eg $\frac{27}{2}$ - do not award this mark if more than one value for S_{\pm} stated	A0 for a triple-decker fraction e.g. $\frac{9}{\frac{2}{3}}$
				[4]			