Question		on	Answer	Marks	AO	Guidance	
5	(a)		DR				
			$y = (2x - 3)(4x^{2} + 1)^{-1}$ $\Rightarrow \frac{dy}{dx} = 2(4x^{2} + 1)^{-1} + (2x - 3)(-1)(4x^{2} + 1)^{-2}(8x)$	M1*	1.1	term only (of the five terms) but must be subtraction in the numerator (but allow subtraction the wrong way round);	By the five terms we mean the four in the numerator and the fifth is the term in the denominator
			$y = \frac{2x-3}{4x^2+1} \Longrightarrow \frac{dy}{dx} = \frac{(4x^2+1)(2)-(2x-3)(8x)}{(4x^2+1)^2}$	A1	1.1	cao must include brackets as necessary	Any correct equivalent form
			$\frac{2(1+12x-4x^2)}{(4x^2+1)^2} = 2$	M1dep*	3.1 a	Sets their derivative (in any form) equal to 2 (M0 if equating to normal gradient)	May equate at any stage (even after incorrect manipulation of their derivative)
						Multiply both sides by $(4x^2+1)^2$ and	
			$1 + 12x - 4x^{2} = (4x^{2} + 1)^{2} \Longrightarrow 16x^{4} + 12x^{2} - 12x = 0$	M1	1.1	simplify (so combining like terms) to obtain a quartic equation (must be expanded with at least three terms – condone lack of = 0 if all terms on the same side) – allow sign errors/minor slips	Dependent on both previous M marks
						but the expansion of $(4x^2+1)^2$ must be	
						three terms of the form $16x^4 + ax^2 + 1$ where $a = \pm 4, \pm 8$	
			$x(4x^3+3x-3) = 0 \Longrightarrow 4x^3+3x-3 = 0 \text{ as } x \neq 0$	A1	2.3	AG with explicit rejection of $x = 0$ – as a minimum must indicate that <i>x</i> cannot equal 0	Just cancelling <i>x</i> is A0
				[5]			

Question		Answer		AO	Guidance	
5	(b)	DR Consider both $f(0.5)$ and $f(1)$ Where $f(x) = \pm (4x^3 + 3x - 3)$ f(0.5) = -1 < 0 and $f(1) = 4 > 0$	M1	1.1	Working or correct answer for one value is sufficient evidence of correct method but both 0.5 and 1 must be seen	Just stating that $f(0.5) < 0$ and $f(1) > 0$ is M0
		(or $f(0.5)=-1<0$ and $f(1)=-4<0$) (or $f(0.5)=1>0$ and $f(1)=-4<0$) Change of sign indicates that the <i>x</i> -coordinate lies between 0.5 and 1	A1 [2]	2.4	Correct values together with explanation (change of sign) and correct conclusion (as a minimum 'root' oe)	
1	11000	Alternative				
		Considers both g(0.5) and g(1) where g(x) = $\frac{(4x^2 + 1)(2) - (2x - 3)(8x)}{(4x^2 + 1)^2}$	M1		Must be using the correct derivative. Working or correct answer for one value is sufficient evidence of correct method but both 0.5 and 1 must be seen	Just stating that g(0.5) > 2 and g(1) < 2 is M0
		g(0.5) = 3 > 2 and $g(1) = 0.72 < 2Values either side of 2 indicates that the x-coordinate liesbetween 0.5 and 1$	A1		Correct values together with explanation (values either side of 2) and correct conclusion (as a minimum 'root' oe)	
			[2]			

Question		on	Answer	Marks	AO	Guidance	
5	(c)		DR Let $h(x) = \frac{3-4x^3}{3} \Rightarrow h'(x) = -4x^2$	B1*	2.1	Calculates correct derivative of rhs of given iterative formula	No montra for just
			As the root α lies in the interval (0.5, 1) \Rightarrow h'(α) < -1 so iterative formula cannot converge to the <i>x</i> -coordinate of <i>P</i>	B1dep*	2.2a	Correct explanation that any value in the given interval gives a gradient which is	No marks for just showing that the iteration doesn't converge using different starting values
				[2]			, and s
5	(d)		DR f(x_n) = 4 x_n^3 + 3 x_n - 3 \Rightarrow f'(x_n) = 12 x_n^2 + 3	B1	1.1	Correct derivative (possibly seen in N-R formula)	Condone <i>x</i> for x_n oe
			$x_{n+1} = x_n - \left\{ \frac{4x_n^3 + 3x_n - 3}{12x_n^2 + 3} \right\}$	M1	2.1	Correct N-R formula seen with correct $f(x_n)$ and their $f'(x_n)$ substituted	Condone <i>x</i> for x_n oe
			$x_0 = 0.5$, $x_1 = \frac{2}{3}$ or 0.66666666, $x_2 = \frac{29}{45}$ or 0.644444, ($x_3 = 0.64395510$)	A1	1.1	First two iterations correctly stated to at least 5 decimal places (or exact) (truncated or rounded)	The correct first two iterations can imply B1 M1
			x coordinate of P is 0.64395	A1	2.2a	have scored $\mathbf{B1}$ $\mathbf{M1}$) – must be stated to	This A mark does not imply the previous A mark
			y coordinate of <i>P</i> is –0.64395	B1	1.1	Independent of all previous marks – must be stated to exactly 5 decimal places	The correct answers with no evidence of N-R (e.g. no iterations stated and no N-R formula) then B0M0A0A0B1 max.
				[5]			