	DR	M1	2.1	M1 for $k(2x+9)^{\frac{3}{2}}$ with non-zero k	$k \neq 1$
	$\int (2x+9)^{\frac{1}{2}} dx = \frac{1}{3} (2x+9)^{\frac{3}{2}}$	A1	1.1	cao (allow unsimplified)	
	$\left[\frac{(2x+9)^{\frac{3}{2}}}{3}\right]_{-\frac{9}{2}}^{0} = 9$	A1	1.1	Uses correct limits (or implies correct limits) to get 9. Condone limits the wrong way round leading to -9 but must be changed to $+9$	
	$4e^{-2x} - 1 = 0 \Longrightarrow e^{-2x} = \frac{1}{4}$ $-2x = \ln\left(\frac{1}{4}\right)$	M1*	3.1 a	Attempt to solve $4e^{-2x} - 1 = 0$ by correctly taking logs of both sides leading to $\pm 2x = \pm \ln \alpha$ where $\alpha > 0$	Allow sign errors and other minor slips only
	$x = -\frac{1}{2}\ln\left(\frac{1}{4}\right)$	A1	1.1	Or equivalent exact value (soi possibly by correct exact value used later)	e.g. $\frac{1}{2}\ln 4$ or $\ln 2$
	$\int (4e^{-2x} - 1) dx = -2e^{-2x} - x$	M1*	1.1	Integrate $4e^{-2x} - 1$ to obtain $ce^{-2x} \pm x$	Where c is non-zero and $c \neq 4$
	$\int_0^{\frac{1}{2}\ln 4} \left(4e^{-2x} - 1\right) dx = \left(-2e^{-\ln 4} - \frac{1}{2}\ln 4\right) - \left(-2\right)$	M1dep*		Uses limits correctly $F(\frac{1}{2}\ln 4)$ - $F(0)$ (with their $\frac{1}{2}\ln 4$) – dependent on the previous two M marks (allow non-exact top limit). Condone limits the wrong way round only if the sign of their answer is subsequently changed	If zero limit is assumed to give 0 (with no working) then M0
	Area = 9 + $\frac{3}{2} - \frac{1}{2}\ln 4 = \frac{21}{2} - \frac{1}{2}\ln 4 = \frac{21}{2} - \ln 2$	A1	2.2a	If the values of the integral(s) are changed from negative to positive (e.g. from limits the wrong way round) with no justification given then A0	p and q need not be explicitly stated. $p = \frac{21}{2} \text{ (oe) and}$ $q = -1$
		[8]			