7	(a)	DR				
		$m \sec \theta + 3\cos \theta = 4\sin \theta$ $\left(\Rightarrow m \sec \theta + \frac{3}{\sec \theta} = 4\sin \theta \right)$ $m \sec^2 \theta + 3 = 4\sin \theta \sec \theta$	M1	2.1	Or for $m \sec \theta + 3\cos \theta = 4\sin \theta$ $\left(\Rightarrow \frac{m \sec \theta}{\cos \theta} + 3 = 4\frac{\sin \theta}{\cos \theta}\right)$ $m \sec^2 \theta + 3 = 4\tan \theta$ The first M mark is for a valid method arriving at a three term equation containing $\sec^2 \theta$	Squaring each individual term of the original equation scores no marks
		$m\left(1+\tan^2\theta\right)+3=4\tan\theta$	M1	1.1	Correctly uses the identity $1 + \tan^2 \theta \equiv \sec^2 \theta$ to obtain an equation in $\tan \theta$ only	
		$m + m \tan^2 \theta + 3 = 4 \tan \theta$ $\Rightarrow m \tan^2 \theta - 4 \tan \theta + (m + 3) = 0$	A1	2.2a	AG so sufficient working must be shown	A0 if angle missing from any trigonometric terms
			[3]			

7	(b)	DR				
		$\Delta = \left(-4\right)^2 - 4m\left(m+3\right)$	M1*	3.1 a	Considers discriminant of given quadratic equation in tan (c must be two terms) to get an expression in m only. M0 for embedded discriminant in quadratic formula unless explicitly considered	Allow $4^2 - 4m(m+3)$
		As the quadratic equation in tan has only one solution for θ in the given interval (and as the range of tan in the given interval is all non-zero real values) this implies that the given equation must only have one real root and therefore $(-4)^2 - 4m(m+3) = 0 \Rightarrow m^2 + 3m - 4 = 0$	M1dep*	1.1	Sets their discriminant equal to zero and obtains an expanded three-term quadratic in <i>m</i>	Reasoning for setting the discriminant equal to zero is not required for this mark
		$(m+4)(m-1) = 0 \Longrightarrow m = -4$ only as <i>m</i> is a negative integer	A1	1.1	State or imply $m = -4$ only	
		$m = -4 \Longrightarrow (2 \tan \theta + 1)^2 = 0$ so $\tan \theta = -0.5$	M1	1.1	Uses their negative integer value of <i>m</i> , and solves the equivalent of their three term quadratic equation in tan, to obtain (at least) $\tan \theta = k$ - dependent on both previous M marks Allow - $4\tan^2 \theta$ - $4\tan \theta$ - $1 = 0$ \triangleright $\tan \theta = -0.5$ for this mark	where k is non-zero. If no method shown for solving their quadratic, then award this mark if the solution is correct for their quadratic
		$\theta = 2.68 \ (3 \text{ sf})$	A1	2.4	For full marks must explain why the discriminant should be set equal to zero – must say that as there is only one value of θ or tan $\theta \triangleright \Delta = 0$ (as a minimum must see explicit mention of 'one' together with ' θ ' or 'tan θ ' for this mark). Allow awrt 2.68	2.677945045
			[5]			