| Question |     | Answer                                                                                                                                                     | Marks     | AO   | Guidance                                                                                                                                                           |                                                                                                                                                              |
|----------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4        | (a) | $2\cot^{2} x - 9\csc x - 3[=0]$ $2\left(\frac{\cos^{2} x}{\sin^{2} x}\right) - 9\left(\frac{1}{\sin x}\right) - 3[=0]$                                     | M1        | 2.1  | Use of both $\cot x = \frac{\cos x}{\sin x}$ and $\csc x = \frac{1}{\sin x}$                                                                                       | Condone use of $s$ and $c$ throughout but final answer must be in terms of sine – allow e.g. $\theta$ for $x$ for $M$ marks but must be $x$ for the $A$ mark |
|          |     | $2\cos^{2} x - 9\sin x - 3\sin^{2} x [= 0]$ $2(1-\sin^{2} x) - 9\sin x - 3\sin^{2} x [= 0]$                                                                | M1        | 1.1  | Correct use of $\sin^2 x + \cos^2 x \equiv 1$ to obtain an equation in $\sin x$ only                                                                               | Not dependent on the first M mark                                                                                                                            |
|          |     | $2 - 2\sin^2 x - 9\sin x - 3\sin^2 x = 0$<br>$\Rightarrow 5\sin^2 x + 9\sin x - 2 = 0$                                                                     | <b>A1</b> | 2.2a | AG (so must be equal to zero) – sufficient working must be shown – any errors seen is A0                                                                           | A0 if an angle is missing from any trig. expression used in their working                                                                                    |
|          |     |                                                                                                                                                            | [3]       |      |                                                                                                                                                                    |                                                                                                                                                              |
|          |     | Alternative method $2(\csc^{2}x - 1) - 9\csc x - 3[= 0]$ $2\csc^{2}x - 9\csc x - 5[= 0]$ $\Leftrightarrow \frac{2}{\sin^{2}x} - \frac{9}{\sin x} - 5[= 0]$ | M1        |      | Correct use of $1 + \cot^2 x = \csc^2 x$<br>Replacing $\csc x$ with $\frac{1}{\sin x}$ to obtain an equation in $\sin x$ only  Note: $2\csc^2 x - 9\csc x - 5 = 0$ | Not dependent on first<br>M mark                                                                                                                             |
|          |     |                                                                                                                                                            |           |      | $\Rightarrow 2 - 9\sin x - 5\sin^2 x = 0 \text{ with no}$ intermediate working is <b>M0</b> unless explicit mention is made of multiplying through by $\sin^2 x$   | or explicit mention is made of dividing by $\csc^2 x$                                                                                                        |
|          |     | $2-9\sin x - 5\sin^2 x = 0$<br>$\Rightarrow 5\sin^2 x + 9\sin x - 2 = 0$                                                                                   | <b>A1</b> |      | AG (so must be equal to zero) – sufficient working must be shown – any errors seen is A0                                                                           | A0 if an angle is missing from any trig. expression used in their working                                                                                    |

| Question |            |     | Answer                                                  | Marks | AO  | Guidance                                                                                                                                                                                                                                            |                                                                                                                                 |  |
|----------|------------|-----|---------------------------------------------------------|-------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|
| 4        | <b>(b)</b> | (i) | DR                                                      |       |     |                                                                                                                                                                                                                                                     |                                                                                                                                 |  |
|          |            |     | $2\cot^2 2\theta - 9\csc 2\theta - 3[=0]$               | M1    | 1.1 | SEE APPENDIX for awarding this mark (solving 3TQ                                                                                                                                                                                                    | condone using $x$ for $\theta$ or $2\theta$ for the <b>M</b> mark –                                                             |  |
|          |            |     | $\Rightarrow (5\sin 2\theta - 1)(\sin 2\theta + 2)[=0]$ |       |     | expressions)                                                                                                                                                                                                                                        | condone for M1 only $(5\sin\theta - 1)(\sin\theta + 2)$                                                                         |  |
|          |            |     | $\sin 2\theta = 0.2$ only as $\sin 2\theta \neq -2$     | B1    | 2.3 | Correctly stating that $\sin 2\theta = 0.2$<br>and that $\sin 2\theta$ cannot equal $-2$<br>(must explicitly reject the $-2$ (but<br>no rationale required) - this mark is<br>not implied by correct values for $\theta$<br>(as <b>DR</b> required) | Must be solving<br>$5 \sin^2 2\theta + 9 \sin 2\theta - 2 = 0$<br>for the <b>B</b> marks<br>condone $\sin 2x = 0.2$             |  |
|          |            |     | $[\theta =] 0.101$                                      | B1    | 1.1 | awrt 0.101 (0.1006789) www                                                                                                                                                                                                                          |                                                                                                                                 |  |
|          |            |     | $[\theta =] 1.470$                                      | B1    | 1.1 | awrt 1.470 (1.4701173) www                                                                                                                                                                                                                          |                                                                                                                                 |  |
|          |            |     |                                                         |       |     | Ignore additional solutions outside of the range $0 < \theta < \pi$ , but if any other solutions inside the range, award at most one of the two final <b>B</b> marks for one correct value                                                          | SC B1 for awrt 0.10 and awrt 1.47 only if 3 dp or better) not seen  SC B1 for awrt 5.77 and awrt 84.2 only (working in degrees) |  |
|          |            |     |                                                         | [4]   |     |                                                                                                                                                                                                                                                     |                                                                                                                                 |  |

| Question |     |      | Answer                                                                                                                                                                                      | Marks | AO  | Guidance                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                              |
|----------|-----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4        | (b) | (ii) | $5\sin^2 2\theta + 9\sin 2\theta - 2[=0]$ $\Rightarrow 5(2\theta)^2 + 9(2\theta) - 2[=0]$ $\left(10\theta^2 + 9\theta - 1[=0]\right)$                                                       | M1    | 1.2 | Use of the small angle approximation $\sin 2\theta \approx 2\theta$ twice in the given answer from (a) to obtain a three-term quadratic in $\theta$ (allow un-simplified)                                                                                                                                                             | Award M1 only for $5\theta^2 + 9\theta - 2[=0]$ (so for using $\theta$ instead of $2\theta$ ) – allow e.g. $x$ for $\theta$                                                  |
|          |     |      | $(10\theta - 1)(\theta + 1) = 0 \Rightarrow \theta = 0.10(000)$ so is accurate to 2 decimal places                                                                                          | [2]   | 2.4 | State 0.10 (or better e.g. 0.100) as a decimal following a correct quadratic in $\theta$ seen (no method required for solving the quadratic) and comment that this is accurate to 2 dp (as a minimum must mention '2 dp' with the value of 0.10(000) appearing in this part and 0.10 or 0.101 or 0.100(6789) appearing in part (b)(i) | This mark is dependent on an awrt 0.10 seen in part (b)(i) or a correct sign change test (see below)  Ignore any consideration of other root(s) SEE APPENDIX FOR ALTERNATIVE |
|          |     |      | Alternative for M mark                                                                                                                                                                      |       |     |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                              |
|          |     |      | $\sin 2\theta = 0.2$ (from part <b>(b)(i)</b> )<br>$\Rightarrow 2\theta = 0.2$                                                                                                              |       |     | Re-writing at least one of their equations $\sin 2\theta = k$ with $-1 < k < 1$ (from part (a)) as $2\theta = k$                                                                                                                                                                                                                      |                                                                                                                                                                              |
|          |     |      | Alternative for A mark                                                                                                                                                                      |       |     |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                              |
|          |     |      | $f(\theta) = 2 \cot^2 2\theta - 9 \csc 2\theta - 3$ $f(0.105) = -2.1497 < 0$ $f(0.095) = 3.4185 > 0$ Change of sign indicates that the approximate solution is accurate to 2 decimal places |       |     | Correct values to at least 1 dp (rot) with explanation ('change of sign' either stated or comparing values with zero) and correct conclusion (as a minimum must mention '2 dp')                                                                                                                                                       |                                                                                                                                                                              |

## **APPENDIX**

## Rules for solving quadratics in questions 2 and 4(b)(i) ONLY

In questions 2 and 4(b)(i) candidates are required to solve 3 term quadratics (3TQ) using DR – therefore we must see a correct, complete method for solving

these quadratics – the correct answers do not imply the corresponding M mark, for example in question 2,  $9x^2 - 38x + 8 = 0 \Rightarrow x = 4$  or  $x = \frac{2}{9}$  is **M0 Rules for factorising:** 

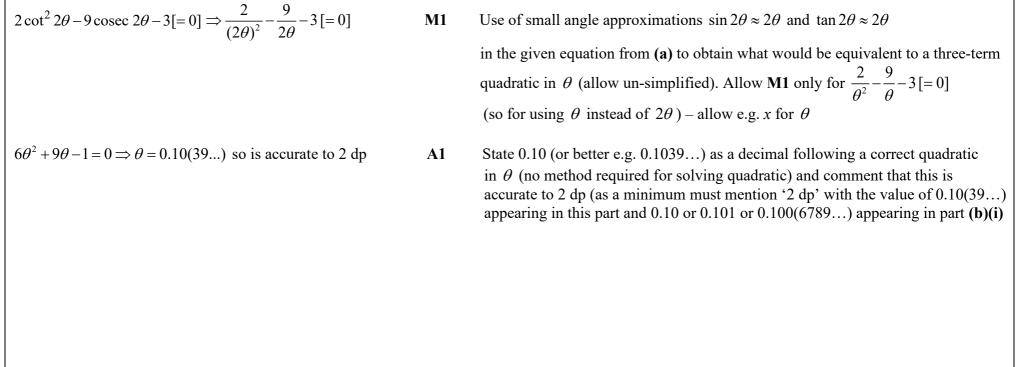
 $at^2 + bt + c \Rightarrow (mt + n)(pt + q)$  where a = mp and one of mq + np = b or c = nq (so when expanding their factorised expression it must give the correct quadratic term and one other term correct of the preceding 3TO expression/equation)

e.g. in question 2 (and similarly for question 4(b)(i)):

 $9x^2 - 38x + 8 = (x - \frac{2}{9})(x - 4)$  is **M0** (but the following **B1** for the correct c.v. of  $\frac{2}{9}$  and 4 in qu. 2 can still be awarded as they follow from these two factors)

 $9x^2 - 38x + 8 = (3x + 8)(3x + 1)$  is **M1** (when expanded the  $x^2$  and constant terms are correct)

Allow correct part factorisation for their 3TQ expression e.g. if correct 3TQ then in question 2 the expression 9x(x-4)-2(x-4) scores M1


## Rules for the formula:

Must apply the correct formula for their three-term quadratic (no errors even if correct formula is stated) – note that stating the formula (in terms of a, b and c) followed immediately by the corresponding roots is  $\mathbf{M0}$  – we **must** see the formula being applied e.g.  $9x^2 - 38x + 8 = 0 \Rightarrow x = \frac{38 \pm \sqrt{38^2 - 4(9)(8)}}{2(9)}$ 

Minimal acceptable working would be  $x = \frac{38 \pm \sqrt{1156}}{18}$  (so must explicitly see the discriminant) for M1

**Rules for completing the square** – using  $9x^2 - 38x + 8 = 0$  as an example:

The M1 is not awarded until correctly getting to the stage of  $x - \frac{19}{9} = \pm \sqrt{\frac{289}{81}}$  (must include  $\pm$  so implying two roots) with no errors (so consistent with applying the formula correctly)



Alternative for 4(b)(ii)