Question			Answer	Marks	AO	Guidance				
6	(a)		$x = 4k + k\sin t, y = 2 + 4\cos t$	M1	3.1a	Re-arranges to obtain both				
			$\sin t = \frac{x - 4k}{k}, \cos t = \frac{y - 2}{4}$ and use of			$\sin t = \frac{x \pm 4k}{k} \text{ and } \cos t = \frac{y \pm 2}{4} \text{ and }$				
			$\sin^2 t + \cos^2 t = 1$			use $\sin^2 t + \cos^2 t = 1$ to eliminate t				
			$\frac{(x-4k)^2}{k^2} + \frac{(y-2)^2}{16} = 1$	A1	1.1	Allow any correct un-simplified cartesian form not involving trigonometric terms ISW once a correct answer seen				
				[2]						
SC for part (a): If M0 awarded then SC B1 for $y = 2 + 4\cos\left(\arcsin\left(\frac{x - 4k}{k}\right)\right)$ or $x = 4k + k\sin\left(\arccos\left(\frac{y - 2}{4}\right)\right)$ or $\arcsin\left(\frac{x - 4k}{k}\right) = \arccos\left(\frac{y - 2}{4}\right)$ (or										
any correct form in terms of trig. functions – allow \cos^{-1} for arccos etc.)										
If considering one branch only e.g. $y = 2 + 4\sqrt{1 - \sin^2 t} = 2 + 4\sqrt{1 - \left(\frac{x - 4k}{k}\right)^2}$ this scores M1 only (or equivalent expression for x)										
If considering both branches e.g. $y = 2 \pm 4\sqrt{1-\sin^2 t} = 2 \pm 4\sqrt{1-\left(\frac{x-4k}{k}\right)^2}$ then this scores M1 A1 (or equivalent expression for x)										
Note a (con	Note a (common) correct answer for M1 A1 is: $x^2 + y^2 = 16k^2 + 8k(x - 4k) + (x - 4k)^2 + 4 + 4(y - 2) + (y - 2)^2$									

Question			Answer	Marks	AO	Guidance		
6	(b)	(i)	C is a circle $\Rightarrow k^2 = 16$ $r = 4$	M1 A1 [2]	3.1a 1.1	Setting c and d equal in their $\frac{(x \pm a)^2}{c} + \frac{(y \pm b)^2}{d} = 1 \text{ or stating that}$ $y_{\min} = -2 \text{ and } y_{\max} = 6$ $r = \pm 4 \text{ is } \mathbf{A0} \text{ unless replaced with positive } r \text{ only}$	Possibly implied by correct value for <i>r</i> www	
6	(b)	(ii)	(16,2),(-16,2)	B2	2.2a 2.2a	B1 for either one correct centre or both <i>x</i> -coordinates correct	These marks are dependent on $r = 4$ from correct working or www	