Question		Answer	Marks	AO	Guidance		
7		For reference: $5x - 2xy + 2y^2 - k = 0$	M1*	2.1	Either $\frac{d}{dx}(2xy) = 2y + 2x\frac{dy}{dx}$ or	Attempt at implicit differentiation wrt x	
					$\frac{\mathrm{d}}{\mathrm{d}x}(y^2) = 2y\frac{\mathrm{d}y}{\mathrm{d}x}$		
		$5 - 2y - 2x\frac{\mathrm{d}y}{\mathrm{d}x} + 4y\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	A1	1.1	Correct equation (any form) – allow = 0 implied by later working	Setting derivative equal to y' is A0	
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2y - 5}{4y - 2x} \text{ so at } P \text{ and } Q, \ 4y - 2x = 0$	M1dep*	3.1a	Set the denominator of their $\frac{dy}{dx}$ equal to zero (oe)	Denominator must be linear in both x and y	
		$5x - 2xy + 2y^{2} - k = 0$ $\Rightarrow 5(2y) - 2(2y)y + 2y^{2} - k = 0$ $\Rightarrow 2y^{2} - 10y + k = 0$	M1	1.1	Eliminate x correctly and simplify to a 3TQ quadratic in y (if correct: $2y^2 - 10y + k = 0$) or eliminate y correctly to form a 3TQ quadratic in x (if correct: $x^2 - 10x + 2k = 0$)	Dependent on both previous M marks – condone sign slips only in simplification	
		Difference in y values is 3 so $\frac{\sqrt{100 - 8k}}{2} = 3$ $\left(\text{or } \frac{10 + \sqrt{100 - 8k}}{4} - \frac{10 - \sqrt{100 - 8k}}{4} = 3 \right)$	M1	1.1	Setting up the equation for diff. in y $\frac{\sqrt{b^2 - 4ac}}{a} = \pm 3$, LHS of equation must be correct following through from their 3TQ (the constant term for their 3TQ in y must contain k)	Dependent on first two M marks – if considering diff. in x values = 3 then M0 Correct k or both y's www is M1 A1	
		k = 8	A1	1.1	www (can be implied by correct <i>y</i> -values)	$y_{\rm P}=1, y_{\rm Q}=4$	
		$x_P = 2, x_Q = 8$	A1	2.2a	Both correct www – do not penalise $x_P = 8$, $x_Q = 2$	Dependent on all previous marks	
			[7]				

Question	Answer	Marks	AO	Guidance	
	Alternative for the first 3 marks			Implicit differentiation wrt y	
	Attempt at implicit differentiation wrt y	M1		Either $\frac{d}{dx}(2xy) = 2x + 2y\frac{dx}{dy}$ or $\frac{d}{dy}(5x) = 5\frac{dx}{dy}$	
	$5\frac{\mathrm{d}x}{\mathrm{d}y} - 2x - 2y\frac{\mathrm{d}x}{\mathrm{d}y} + 4y = 0$	A1		Correct equation (any form) – allow = 0 implied by later working	Setting derivative equal to x' is $A0$
	$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{4y - 2x}{2y - 5} \text{ so at } P \text{ and } Q, \ 4y - 2x = 0$	IVI I		Set the numerator of their $\frac{dx}{dy} = 0$ oe	
	Alternative for the first 4 marks			Making x the subject, diff. wrt y	
	$5x - 2xy + 2y^2 - k = 0 \Rightarrow x = \frac{k - 2y^2}{5 - 2y}$	M1*		Makes x the subject – must be of the form $x = \frac{f(y)}{g(y)}$	where $f(y)$ is a two- term quadratic fn. in y and $g(y)$ is a two- term linear fn. in y
	$\frac{dx}{dy} = \frac{(5-2y)(-4y) - (k-2y^2)(-2)}{(5-2y)^2}$	A1		Correct derivative (allow unsimplified)	Any equivalent correct form
	$(5-2y)(-4y) - (k-2y^2)(-2) = 0$	M1dep*		Set the numerator of their $\frac{dx}{dy}$ equal to zero (oe) where $\frac{dx}{dy} = \frac{g(y) \times f'(y) \pm f(y) \times g'(y)}{(g(y))^2}$	Where f(y) and g(y) are as defined in the first M mark and derivatives follow through correctly from their f and g
	$-20y + 8y^2 + 2k - 4y^2 = 0$ $\Rightarrow 2y^2 - 10y + k = 0$	M1		Simplify to a 3TQ quadratic in y (if correct: $2y^2 - 10y + k = 0$)	Dependent on both previous M marks – condone sign slips only in simplification to 3 TQ in y

Question	Answer	Marks	AO	Guidance		
	Alternative 1 for the fourth M mark			Roots of polynomials		
	If correct: $2y^2 - 10y + k$ [= 0] Difference in y values is 3 therefore if the y roots are $\alpha, 3 + \alpha$ then $\alpha + (3 + \alpha) = -\frac{-10}{2}$ $(\alpha = 1 \Rightarrow y = 1, 4)$ If using this method, then candidates do not need to find k , so the penultimate A mark is for the correct two y values (1 and 4)	M1		Using $\sum \alpha = -\frac{b}{a}$ correctly for their 3TQ in y with roots that differ by 3	Could use e.g. $\alpha, \alpha - 3$ etc. Dependent on first two M marks	
	Alternative 2 for the fourth M mark			Difference in x-values		
	Difference in y-values is 3 therefore the difference in x values is 6 (from $4y - 2x = 0$) Therefore, as $x^2 - 10x + 2k = 0$ $\Rightarrow \sqrt{100 - 8k} = 6$ $\left(\text{or } \frac{10 + \sqrt{100 - 8k}}{2} - \frac{10 - \sqrt{100 - 8k}}{2} = 6\right)$	M1		Setting up the equation for diff. in x $\frac{\sqrt{b^2 - 4ac}}{a} = \pm \text{their 6, with their 6}$ from their $4(3) - 2x = 0$, LHS of equation must be correct following through from their 3TQ (the constant term for their 3TQ in x must contain k)	Dependent on first two M marks	