
Question		Answer	Marks	AOs		Guidance
10	i	velocity	B1	1.1a	Two line segments with one horizontal	
		1 12.5 time	B1 [2]	1.1a	(T, 4) and $(12.5, 4)$ labelled or indicated on scales. Allow their 2.5 marked instead of T . On axes labelled v and t oe	
	ii	$\frac{1}{2} \times 4 \times (12.5 + (12.5 - T)) = 45$	M1	3.1a	Attempt to find area of trapezium or both the the triangle $\left(\frac{1}{2}T \times 4\right)$ and the rectangle $(12.5-T)\times 4$.	Suvat equations can be used for two phases of motion.
		T = 2.5	A1 [2]	1.1b	cao	
	iii	EITHER	3			
		$a = \frac{4}{2.5} = 1.6 \text{ m s}^{-2}$	M1	1.1a	Soi	
	-	$s = \frac{1}{2} \times 1.6t^2 = 0.8t^2$	A1 [2]	3.3	FT their T	
		OR $a = \frac{4}{2.5} = 1.6 \text{ m s}^{-2}$ $v = \int a dt = 1.6t + c$	M1		Soi FT their T	
		When $t = 0$, $v = 0$ so $c = 0$ $s = \int v dt = 0.8t^2 + c$				
		When $t = 0$, $s = 0$ so $c = 0$	A1		Must be complete solution – do not award	
		Giving $s = 0.8t^2$	[2]		without consideration of $+c$ at least once	
	iv	$0.8t^2 = 4$	B1FT	3.4	FT their quadratic model in (iii)	
		$t = \sqrt{5} = 2.24 \text{ s}$	[1]			

