| 10 | Rory runs a distance of $45 \mathrm{m}$ in $12.5 \mathrm{s}$. He starts from rest and accelerates to a speed of $4 \mathrm{m}\mathrm{s}^{-1}$. He runs the remaining distance at $4 \mathrm{m}\mathrm{s}^{-1}$. | | | |---|--|---|-----| | | Rory proposes a model in which the acceleration is constant until time T seconds. | | | | | (i) | Sketch the velocity-time graph for Rory's run using this model. | [2] | | | (ii) | Calculate T. | [2] | | | (iii) | Find an expression for Rory's displacement at time t s for $0 \le t \le T$. | [2] | | | (iv) | Use this model to find the time taken for Rory to run the first 4 m. | [1] | | Rory proposes a refined model in which the velocity during the acceleration phase is a quadratic function of t . The graph of Rory's quadratic goes through $(0, 0)$ and has its maximum point at $(S, 4)$. In this model the acceleration phase lasts until time S seconds, after which the velocity is constant. | | | | | | (v) | Sketch a velocity-time graph that represents Rory's run using this refined model. | [1] | | (| (vi) | State with a reason whether S is greater than T or less than T . (You are not required to calculate value of S .) | the |