Question		n	Answer	Marks	AOs	Guidance	
9	(a)		V T $3T$	B1 B1	1.1a 1.1a	Two line segments starting and ending on the <i>x</i> -axis <i>T</i> and 3 <i>T</i> seen on <i>t</i> -axis	Instead of 3 <i>T</i> , allow for 2 <i>T</i> shown on the horizontal axis for the second phase
9	(b)		Acceleration phase $\frac{V}{T} = 2.5$ Area under graph $\frac{1}{2} \times V \times 3T = 240$ Solving simultaneously $\frac{3}{2}(2.5T)T = 240 \Rightarrow T^2 = 64$ So $T = 8$ and $V = 20$	B1 B1 M1 A1 [4]	3.4 3.4 1.1a 1.1	May be sum of two areas soi Attempt to eliminate one variable correct pair of answers	$\frac{1}{2}VT + VT = 240$
			OR Acceleration phase using $v = u + at$ $V = 2.5 \times T$ First phase has distance $240 \div 3 = 80 \text{ m}$ Using $s = 80$, $u = 0$, $a = 2.5$ $80 = \frac{1}{2} \times 2.5T^2$ giving $T = 8$ and $V = 20$	B1 M1 B1		May be final step using $T = 8$ award if seen Using <i>suvat</i> equation(s) leading to a value for t with $s = 80$ correct pair of answers	