| 11 | A sports car accelerates along a straight road from rest. After 5 s its velocity is 9 m s ⁻¹ . | | |----|---|-----------------| | | In model A, the acceleration is assumed to be constant. | | | | (a) Calculate the distance travelled by the car in the first 5 seconds according to model A. [2] | 2] | | | In model B, the velocity v in ms ⁻¹ is given by $v = 0.05t^3 + kt$, where t is the time in seconds after the start and k is a constant. | er | | | (b) Find the value of k which gives the correct value of v when $t = 5$. | 2] | | | (c) Using this value of k in model B, calculate the acceleration of the car when $t = 5$. | 2] | | | The car travels 16 m in the first 5 seconds. | | | | (d) Show that model B, with the value of k found in part (b), better fits this information that model A does. | in
3] |