11	A sports car accelerates along a straight road from rest. After 5 s its velocity is 9 m s ⁻¹ .	
	In model A, the acceleration is assumed to be constant.	
	(a) Calculate the distance travelled by the car in the first 5 seconds according to model A. [2]	2]
	In model B, the velocity v in ms ⁻¹ is given by $v = 0.05t^3 + kt$, where t is the time in seconds after the start and k is a constant.	er
	(b) Find the value of k which gives the correct value of v when $t = 5$.	2]
	(c) Using this value of k in model B, calculate the acceleration of the car when $t = 5$.	2]
	The car travels 16 m in the first 5 seconds.	
	(d) Show that model B, with the value of k found in part (b), better fits this information that model A does.	in 3]