	Question	Answer	Marks	AO	Guidance
12		For AB, Newton's second law 8=5a			
		acceleration is 1.6 ms ⁻²	B1	3.1b	Uses Newton's second law to calculate acceleration
		for AB $u=0, a=1.6, t=3$			
		$s = \frac{1}{2}at^2 = \frac{1}{2} \times 1.6 \times 3^2 = 7.2 \text{ m}$	M1	1.1a	Uses $suvat$ equation(s) and their a leading to a value for s
		velocity at B $v = at = 1.6 \times 3 = 4.8 \text{ ms}^{-1}$	M1	3.1b	Uses <i>suvat</i> equation(s) and their α leading to a value for velocity at B
		for BC Newton's second law $8-28=5a$	M1	3.1b	Uses Newton's second law to calculate acceleration. Condone missing 8N force. Allow sign errors.
		acceleration is – 4 ms ⁻²	A1	1.1b	soi
		for BC $u = 4.8$, $v = 0$, $a = -4$			
		$0^2 = 4.8^2 - 2 \times 4s$	M1	1.1a	Uses $suvat$ equation(s) and their a leading to a value for s .
		s = 2.88 m	A1	1.1b	FT their negative a and their positive velocity at B
		distance AC is 7.2+ 2.88=10.08 m	A1	1.1b	Allow 10 m
			[8]		