Question			Answer	Marks	AO	Guidance
10	(a)	(i)	When $t = 0$, $L = 2800$ She invests £2800	B1	3.1b	cao
				[1]		
10	(a)	(ii)	Each year the amount is multiplied by 1.023 which is 2.3% annual interest	B1	3.1b	cao
				[1]		
10	(b)		$A = 3000 \times 1.02^{t}$ So $a = 3000$ And $b = 1.02$	B1 B1	1.1b 1.1b	Allow for <i>a</i> and <i>b</i> given explicitly or embedded in an exponential expression
			And $b = 1.02$	[2]	1.10	
				L#]		

10	(c)	Equal amounts if $3000 \times 1.02^{t} = 2800 \times 1.023^{t}$ $\ln 3000 + t \log 1.02$ $= \ln 2800 + t \ln 1.023$ $t = \frac{\ln 3000 - \ln 2800}{\ln 1.023 - \ln 1.02} = 23.5$	M1 M1	3.1b 1.1a	Use of laws of logarithms leading to a linear equation in t using their values of a and b Collecting terms
		So they have equal amounts after 23.5 years	A1	1.1b	Cao must be 1 d.p.
		Alternative method Equal amounts if $3000 \times 1.02^{t} = 2800 \times 1.023^{t}$ $\frac{3}{2.8} = \left(\frac{1.023}{1.02}\right)^{t}$ so $t = \frac{\log \frac{3}{2.8}}{\log \frac{1.023}{1.02}} = 23.5$	M1 M1		Equating and attempt to collect terms using their values of <i>a</i> and <i>b</i> leading to an equation in which <i>t</i> appears only once Uses logarithms leading to a value for <i>t</i> allow $\log_{1.003} 1.07$ or $\frac{\log 1.07}{\log 1.003}$ or better for the method mark
		So they have equal amounts after 23.5 years	A1		Cao must be 1 d.p. Note this is obtained from exact values or using 1.00294 and 1.0714 or better Allow full credit for trial and improvement that gives 23.5 and £4778 to the nearest pound
					If M0M0 given, allow SC2 for 23.5 seen, without £4778 If M0M0 given, allow SC1 for at least 2 trials clearly seen even if a root not found
			[3]		