Question		Answer	Marks	AO	Guidance
3		n = 2k [where k is an integer]			
		$n^3 + 4 = (2k)^3 + 4$	M1	2.1	Uses the evenness of n in an algebraic form. Allow if they state that the cube of an even number is a multiple of 8
		$=4\left(2k^3+1\right)$			
		Which is a multiple of 4	A1	2.1	Also allow for a factorised expression, or division by 4. Also allow an argument that each term of the sum is a multiple of 4
		But $(2k^3+1)$ is always odd so not a			Any clear argument leading to the statement that the expression is not a multiple of 8 www
		multiple of 8	A1	2.4	(See appendix for exemplars)
			[3]		

Exemplar responses for Q3 last mark

 $\frac{8k^3+4}{8} = k^3 + \frac{1}{2}$ so not a multiple of 8

Response	
$8(k^3 + \frac{1}{2})$ so not a multiple of 8	A1
$8(k^3 + \frac{1}{2})$ so 8 is not a factor	A0
$8k^3 + 4$ so 8 is not a factor so not a multiple of 8	A1
$8k^3 + 4$ so 8 is not a factor	A0
$8k^3 + 4$ cannot take a factor of 8 so it's not a multiple of 8	A1
$8k^3 + 44$ is not a multiple of 8, so not a multiple of 8	A1
$8k^3$ is a multiple of 4 and 8 but +4 means multiple of 4 and not 8	A1

A1