	Question	Answer	Marks	AO	Guidance
13		$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] = 12x^2 + 14x - 6$	M1	3.1a	Expression of the form $\alpha x^2 + \beta x + \gamma$ where $\alpha, \beta, \gamma \in \mathbb{R}$ with at least two terms of the correct form
			A1	1.1	Fully correct derivative
		Attempt to solve $12x^2 + 14x - 6 = 0$ or any multiple e.g. $6x^2 + 7x - 3 = 0$ (accept with < 0 or > 0 etc shown)	M1	1.1	May see quadratic formula (QF) or $(2x + 3)(3x - 1)$ or completing the square or calculator method.
					$(2x \pm 3)(3x \pm 1)$ M1
					$k(2x \pm 3)(3x \pm 1) \text{ M1}$
					Solving $\alpha x^2 + \beta x + \gamma = 0$ to get $(ax + b)(cx + d)$ where $ ac = \alpha$ and $ bd = \gamma$ scores M1
					If using QF a correctly quoted formula followed by a slip in the substitution of values scores M1, but if the formula isn't quoted and there are errors in the substitution then M0.
		$x = -\frac{3}{2}$ and $x = \frac{1}{3}$ only identified	A1	1.1	If these values are stated incorrectly with no method shown for solving the quadratic, then the last three marks are lost.
		$-\frac{3}{2} < x < \frac{1}{3}$	A1	3.2a	Accept strict or non-strict inequalities here.
					Accept $x > -\frac{3}{2}$ and $x < \frac{1}{3}$ or $x \in \left(-\frac{3}{2}, \frac{1}{3}\right)$ with strict or non-strict
					inequalities but NOT $x > -\frac{3}{2}$ or $x < \frac{1}{3}$
			[5]		