5	(i)	$\mathbf{v} = \frac{d\mathbf{r}}{dt} = (12 - 2 \times 2t)\mathbf{i} + (2t - 6)\mathbf{j}$	M1	1.1a	Attempt to differentiate at least one coefficient	
			A1 [2]	2.5	Must use vector notation	
	(ii)	When $t = 3$ both components of velocity are zero,	M1	3.1a	Equating at least one component of their vector velocity to zero	Do not allow M1 for solving 12-4t = 2t-6 unless at least one zero subsequently
		so the particle is stationary at $t = 3$.	E1 [2]	2.2a	Must be argued from two zero components	established