Q	uestion	Answer	Marks	AOs		Guidance
11	(i)	Component of weight down the plane			AG	
		$4.7g\sin 60^\circ$	B1	2.1	Award if seen	
		Equilibrium equation $T = 4.7 g \sin 60^{\circ}$ = 39.889 so $T = 39.9$ to 3 sf	E1 [2]	3.3	Must be clear that 39.9 N is the tension and not just component of weight	
	(ii)	Resolve perpendicular to the slope				
		N is the normal reaction between plane and block B $N = 4 + 25^{\circ}$				
		$N = 4g\cos 25^\circ$	B1	1.1a	Need not be evaluated here $[\approx 35.5]$	
		Resolve up the slope $T - F - 4g \sin 25^\circ = 0$	M1 A1	3.3 1.1b	Allow only sign errors F need not be evaluated here	
		On the point of sliding so $F = \mu N = \mu \times 4g \cos 25^{\circ}$	M1	3.1b	[≈ 23.3] Do not allow for $F \le \mu N$ unless = used subsequently. FT their values.	If only values are seen used, it must be clear that the values used are friction and
		$\mu = \frac{4.7g\sin 60^\circ - 4g\sin 25^\circ}{4g\cos 25^\circ} = 0.656 \text{ to } 3\text{sf}$	A1 [5]	1.1b	FT (notice this answer is 0.657 if 39.9 used for <i>T</i>)	normal reaction.