Q	uestion	Answer	Marks	AOs		Guidance
14	(i)	u = 5, v = 11.4, t = 4				
		$a = \frac{v - u}{1.4 - 5} = 1.6$	M1	3.1b	Using <i>suvat</i> equation(s) leading to value for <i>a</i>	
		t 4	A1	1.1b	Any form	
		v = 5 + 1.6t	A1	3.3	FT their a	
	(**)		[3]			
	(ii)	The car would not be able to accelerate indefinitely	El	3.5b		
		- the velocity would become too large	[1]			
	(iii)	When $v = 17.8$				
		17.8-5	B 1	1.1a	Calculation or point on graph	
		$t = \frac{16}{16} = 8$			labelled at $t = 8$	
		20 † velocity (ms-1)				
			G1	1.1a	Two line segments with one	
		15			horizontal	
			G1	3.5c	Axes labelled.	Mark intent for 17.8 – allow
		10			(0, 5) and constant speed 17.8 clear	for a linear scale beyond 17.8
		5			on vertical scale	5
			[3]			
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[0]			
	(iv)	Dividing area into sections	M1	3.1h		FT their graph if linear for
	(1)	1		0.10		M1 A0 for a triangle or
		Area under trapezium = $\frac{1}{2}(5+17.8) \times 8 = 91.2$	Δ1	1 19	May be found as sum of areas. May	trapezium area
			лі	1.14	he implied by correct total	trapezium area
		Area rectangle $12 \times 17.8 = 213.6$	4.1	1 1h	ET their distance found for first 8s	213.6 must be added to
		Total displacement = 304.8 m	[2]	1.10	1 T then distance found for first os	another distance
	()		[J] D1	2.4	Allow with out commonst	another distance
	(V)	When $t = 4$ $v = 5 + 0.3 \times 4^2 - 0.05 \times 4^3 = 11.4$ ms ⁻¹	DI [1]	3.4	Allow without comment	
		Which matches the given value	[1]			
	(vi)	$dv = 0.6 + 2t = 0.05 + 2t^2 \begin{bmatrix} 1.2t & 0.15t^2 \end{bmatrix}$				Final mark can be awarded
		$\frac{1}{dt} = 0.6 \times 2t - 0.05 \times 3t$ $\begin{bmatrix} = 1.2t - 0.15t \end{bmatrix}$	M1	1.1a	Need not be simplified	independently for a statement
		When $t = 8$, $v = 1.2 \times 8 - 0.15 \times 64 = 0$				about change in acceleration
		$\Delta_{\text{cceleration is zero at } t = 8$	A1	3.2a	Must mention acceleration	as long as supported by some
		which means that the car reaches its maximum				numerical evidence
		which means that the call feaches its maximum	E1	3.2a	Must compare with model A	
		speed without the sudden change in acceleration in	[3]		*	
		model A.	L* J			

Question	Answer	Marks	AOs		Guidance
(vii)	EITHER	M1	2.1		Allow for correct definite
	$\int_0^8 (5+0.6t^2 - 0.05t^3) dt = \left[5t + 0.2t^3 - 0.0125t^4 \right]_0^8$ =91.2 m	A1	1.1b	BC	integral stated and calculator used. Also allow M1A1 for
	which is same as model A for the first 8 s Distance is the same for the remainder of the time So this is the same as model A at $t = 20$	E1 [3]	2.1	Must consider to $t = 20$	$5 \times 8 - 0.2 \times 8^3 - 0.0125 \times 8^4$ seen
	OR $\int_{0}^{8} (5 + 0.6t^{2} - 0.05t^{3}) dt = [5t + 0.2t^{3} - 0.0125t^{4}]_{0}^{8}$	M1		BC	Allow for correct definite integral stated and calculator used.
	=91.2 m	A1			
	Distance at 17.8 ms^{-1} 213.6				
	Total distance 304.8m				
	[which is the same as model A]	A1		Must consider to $t = 20$	