Let R_P and R_Q be the normal reactions upwards Assume the person stands on the end beyond Q and that the beam is in equilibrium Taking moments about Q: $50g \times 0.3 + R_P \times 2.1 = 4g \times 0.9$ $R_P = \frac{3.6g - 15g}{2.1} [= -53.2] < 0$ So the beam will tip.	M1 A1 A1 [3]	3.1b 1.1b 3.2a	Finding moment of a force about any point Correct equation from moments about Q Conclusion must be clear from correct working (R_P need not be evaluated but must be clear that it is negative)	If the weight of the person shown between P and Q allow M1 maximum. Could also be obtained from moments about P and resolving to evaluate R_p
Alternative solution If the person stands <i>x</i> m beyond Q so that the beam is on the point of tipping $R_P = 0$ Taking moments about Q $4g \times 0.9 = 50gx$ giving $x = 0.072$ 0.072 < 0.3 so this is possible while standing on the beam	M1 A1 A1		Finding moment of a force about any point Correct equation from moments about Q Conclusion must be clear from correct working and reference to 0.3 m	
Second alternative solution Largest clockwise moment of the weight of the person about Q is $50g \times 0.3 = 15g [=147]$ Anticlockwise moment of the weight of the beam is $4g \times 0.9 = 3.6g [=35.28]$ The moment of the person's weight is larger so the beam will tip	M1 A1 A1		Finding moment of a force about any point Both correct moments about Q required Conclusion must be clear from a comparison of moments of two forces	SC 2 (omitting g) $0.9 \times 4 < 0.3 \times 50$ 3.6 < 15 So the beam will tip.