9	(a)	Vertical motion $u_y = 100 \sin 25^\circ$, $v_y = 0$ $v^2 = u^2 + 2as$	M1	3.3	Use of <i>suvat</i> equation(s) with $v = 0$ leading to a value for <i>s</i> . Allow sign	eg from $t = 4.31$ s
		$0 = (100\sin 25^\circ)^2 - 2 \times 9.8 \times s$ $s = \frac{42.26^2}{19.6} = 91.1 \text{ m} (3\text{ sf})$	B1 A1	1.1a 3.2a	errors Correct component of velocity soi cao	
		19.0	[3]			
9	(b)	Vertical motion $u_y = 100 \sin 25^\circ$, $y = 0$ $s = ut + \frac{1}{2}at^2 \Rightarrow 0 = (100 \sin 25^\circ)t - 4.9t^2$ $t(100 \sin 25^\circ - 4.9t) = 0 \Rightarrow t = 0 \text{ or } 8.62$	M1	3.3	Use of <i>suvat</i> equation(s) with $y = 0$ and their $u_y \neq 100$ leading to a value for <i>t</i> . Allow sign errors	
			A1	1.1a	Correct value or expression for <i>t</i>	Can be BC
		$x = (100\cos 25^\circ) \times 8.62 = 781.678$	M1	1.1 a	from correct working Use of horizontal motion equation	Allow for sin/cos interchange used
		Range is 782 m (3sf)	A1 [4]	1.1b	with $u_x = 100 \cos 25^\circ$ FT their value for t	throughout part (b).