11	(a)		B1 B1	1.1a 1.1a	both weights correct. common tension in the rigtht	Allow weight of box and weight of sphere, but not if both marked weight. Allow T_1 and T_2 provided
		\mathbf{T} \mathbf{V} 2g N $\mathbf{0.8g N}$	B1 [3]	1.1a	directions Friction and normal reaction and no extra forces	they are clearly shown equal to each other elsewhere. For <i>F</i> , allow $0.35R$, $0.35 \times 2g$ 0.7g or 6.86 N
11	(b)	T - F = 2a $0.8g - T = 0.8a$	B1 B1 [2]	1.1a 1.1a	Allow any expression for F Allow distinct tensions if consistent with diagram	For <i>F</i> , allow 0.35 <i>R</i> , 0.35×2 <i>g</i> 0.7 <i>g</i> or 6.86 N
11	(c)	Vertically for the block $R = 2g$ Friction $F = 0.35R = 0.7g$	M1 A1	3.1b 2.1	Attempt to use μ to evaluate friction Correct value for F	Some of this work may already have been seen in previous part
		Add equations $0.8g - F = 2.8a$	M1	2.1	Eliminate T from their equations	previous part
		0.8g - 0.7g = 2.8a $a = 0.35 \text{ m s}^2$	A1 [4]	2.1	AG must follow from correct work	
11	(d)	Use $s = 0.5$, $u = 0$, $a = 0.35$ $0.5 = \frac{1}{2} \times 0.35 \times t^2$	M1	1.1a	Using <i>suvat</i> equation(s) leading to a value for <i>t</i>	
		t = 1.69 s	A1 [2]	1.1	Do not allow ± 1.69	