Question		n	Answer	Marks	AOs	Guidance	
10	(a)		Time when $v = 0$ given by $0 = 29.4 - 9.8t$, so $t = 3$ s	E1	2.1	Using <i>suvat</i> equation(s) leading to	Allow for verifying that $t = 3$ gives $v = 0$
				[1]		correct value for t with $v = 0$	if identified as the maximum point oe
10	(b)		30 ty 25 - 20 - 15 - 10 -	B1	1.1b	straight line with negative gradient through either (3, 0) or (0, 29.4)	maximum point oc
			5 -5 -10 -15 -20	B1 [2]	1.1b	Both $(3, 0)$ and $(0, 29.4)$ clearly seen Must include negative values of v for $t > 3$	
10	(c)		When $t = 5$, $v = 29.4 - 9.8 \times 5$	M1	1.1a	Using <i>suvat</i> equation(s) leading to a value for v with $t = 5$. Allow sign errors	If motion from the highest point considered $u = 0$, $t = 2$,
			v = -19.6	A1	1.1b	May be implied by 19.6 seen	g = +9.8 then $v = 19.6$ is fully correct.
			Speed is 19.6 m s ⁻¹	A1 [3]	1.1b	FT their negative velocity	Allow M1A1A0 if $29.4 - 9.8 \times 5 = 19.6$ seen
10	(d)		Max height unchanged so $u_y = 29.4 \text{ m s}^{-1}$	B1	3.1b	Allow if calculated from $y = 44.1 \text{ m}$	
			Time to max height unchanged, so 3 s	B1 [2]	3.3		
10	(e)		$u_x \times 3 = 48$	M1	1.1a	Using (their) $t = 3$ to find u_x	
			$u = \sqrt{u_x^2 + u_y^2} = \sqrt{16^2 + 29.4^2} = 33.5$	M1	1.1b	Combining their components to find	
			$\tan \alpha = \frac{u_y}{u_x} = \frac{29.4}{16}$ giving $\alpha = 61.4^\circ$	A1 [3]	1.1b	either one of u and α Both values correct	