Question		Answer	Marks	AOs	Guidance	
12		Normal reaction mg cos15°	B1	3.1b	Correct normal reaction	
		Max friction $\mu N = 0.4mg \cos 15^{\circ}$	M1	1.1b	Attempt to evaluate friction FT their normal reaction.	Only allow 0.4mg if it is clear that mg is their normal reaction and
		Resolve down the slope $mg \sin 15^{\circ} - F = ma$	B1	1.1b	Correct component of weight seen (2.536 <i>m</i>)	not just weight
		$mg \sin 15^{\circ} - 0.4mg \cos 15^{\circ} = ma$ giving $a = -1.25 \text{ m s}^{-2}$	M1	3.1b	All terms present; allow sign errors, sin/cos interchange for weight and their <i>F</i>	
			A1	1.1b	Correct equation (a need not be explicitly evaluated here)	
		Using $v^2 = u^2 + 2as$ $0^2 = 1.2^2 + 2 \times (-1.25)s$	M1	3.1b	Use of <i>suvat</i> equation(s) leading to a value for <i>s</i> using $v = 0$	
		giving $s = 0.576$ m	A1 [7]	1.1b	FT their negative a	