9	(a)	$\mathbf{a} = \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = 2kt\mathbf{i} + 6\mathbf{j}$	M1	3.1 a	differentiating the \mathbf{v} vector
		dt When $t = 2$, $\mathbf{a} = 2 \times 2k\mathbf{i} + 6\mathbf{j}$	M1	1.1b	substituting $t = 2$ into their a vector
					-
		$ \mathbf{a} = \sqrt{(4k)^2 + 6^2} = 10$	M1	3.1a	Equate the magnitude of their a vector to 10
		giving $16k^2 + 36 = 100$			
		So $k=2$	A1	3.2a	must choose the positive value if two values seen
			[4]		
9	(b)	$\mathbf{r} = \int \mathbf{v} \mathrm{d}t = \frac{kt^3}{3}\mathbf{i} + 3t^2\mathbf{j} + \mathbf{c}$	M1	1.1 a	integrating with their <i>k</i> or general <i>k</i> . Allow for a vector or for both components separately integrated.
		particle at the origin when $t = 0$ so $c = 0$			
		kt^3 $\begin{bmatrix} 2t^3 \end{bmatrix}$	A1	1.1b	Condone missing $+\mathbf{c}$ or $+\mathbf{c}$ still in their answer
		So $\mathbf{r} = \frac{kt^3}{3}\mathbf{i} + 3t^2\mathbf{j} = \left[\frac{2t^3}{3}\mathbf{i} + 3t^2\mathbf{j}\right]$			FT their k if positive or general k used
					Must be in vector form
			[2]		
9	(c)	Northeast when the i component $=$ j component			
		$\frac{2t^3}{3} = 3t^2$	M1	3.1b	FT their r
		giving $t = 4.5$ s	A1	1.1b	WWW
		[t = 0 rejected as the particle is at the origin]			
			[2]		