Question		Answer	Marks	AOs		Guidance
6	(i)	Arithmetic sequence with $a=50, d=20$ $\begin{aligned} & S_{24}=\frac{24}{2}(2 \times 50+(24-1) 20) \\ & =£ 6720 \end{aligned}$	M1 A1 [2]	$\begin{aligned} & \text { 1.1a } \\ & 1.1 \mathrm{~b} \end{aligned}$	Using appropriate formula for sum of an arithmetic sequence with $a=50, \quad d=20$ Allow full credit for any correct method	Allow for total written out in full
	(ii)	Each month is 12% more than the previous, so multiplied by 1.12 giving a geometric sequence with $a=50, r=1.12$	$\begin{aligned} & \text { E1 } \\ & {[1]} \end{aligned}$	2.4	Clear argument must include the value 1.12	
	(iii)	Geometric sequence with $a=50, r=1.12$ $\begin{aligned} & S_{24}=\frac{50\left(1.12^{24}-1\right)}{0.12} \\ & =£ 5907.76 \end{aligned}$ which is less than Aleela	M1 A1 E1 [3]	$\begin{gathered} \text { 3.1a } \\ \\ \text { 1.1b } \\ 2.1 \end{gathered}$	Using appropriate formula for sum of a geometric sequence with $a=50, \quad r=1.12$ Allow any suitable rounding FT their values (dep on earning the M marks in part (i) and (iii))	Allow for total written out in full

