Question			Answer	Marks	AOs		Guidance
12	(i)		C is (1, -1)	B1	1.1a	Cao	
				[1]			
	(ii)	A	EITHER Substitute $y = \frac{3}{4}x - 8$ into the equation of the circle	M1	3.1 a	AG Attempt to eliminate one variable	
			$(x-1)^{2} + \left(\frac{3}{4}x - 8 + 1\right)^{2} = 25$ x ² - 8x + 16 = 0 EITHER	M1	1.1a	Attempt to expand and collect terms to obtain 3 term quadratic expression A correct 3 term quadratic	
			$(x-4)^2 = 0$ OR	Al	1.1b		
			Discriminant = $(-8)^2 - 4 \times 1 \times 16 = 0$ So the equation has a repeated root so the line is a tangent	A1 [4]	2.2a	Clearly argued	
	(ii)	A	OR Substitute $x = \frac{4}{3}y - \frac{32}{3}$ into the equation of the	M1	3.1 a	AG Attempt to eliminate one variable	
			circle $\left(\frac{4}{3}y - \frac{32}{3} - 1\right)^2 + (y+1)^2 = 25$ $y^2 + 10y + 25 = 0$ EITHER $(y+5)^2 = 0$	M1 A1	1.1a 1.1b	Attempt to expand and collect terms to obtain 3 term quadratic expression A correct 3 term quadratic	
			OR Discriminant = $10^2 - 4 \times 1 \times 25 = 0$ So the equation has a repeated root so the line is a tangent	A1 [4]	2.2a	Clearly argued	
		В	x = 4 and $y = -5$ so B is (4, -5)	B1 [1]	1.1a	Cao	

Question	Answer	Marks	AOs		Guidance
(iii)	$\angle CAD = \angle CBD = 90^{\circ}$ (radius is perpendicular to	B1	2.1	Allow for one or other of these	Allow up to B1, B1 for any
	the tangent)			angles	two of these three pieces of
	Gradient of AC = $2 - (-1) = 3$				evidence. Allow the final B1
	$\frac{1}{5-1} = \frac{1}{4}$				only when the proof 1s
	(-1) - (-5) = 4				complete and clearly argued.
	Gradient of BC = $\frac{1-4}{1-4} = -\frac{1}{3}$	R 1	3 19		
	So AC is perpendicular to BC so $\angle ACB = 90^{\circ}$	DI	J.1a		
	So ADBC is a rectangle				
	Either $AC = BC$ radius [=5]				
	Or AD = BD equal tangents	B1	2.1	Complete proof	
	so ADBC is a square.	[3]		AG	
	$\angle CAD = \angle CBD = 90^\circ$ (radius is perpendicular to	B1		Allow for one or other of these	
	the tangent)			angles	
	Gradient of AC $2-(-1)$ 3				
	$\frac{1}{5-1} = \frac{1}{4}$				
	Credition of DD is ³				
	Gradient of BD is – 4				
	So AC is parallel to BD So ADBC is a rectangle	B1			
	AC = BC = radius	B1		Complete proof	
	so ADBC is a square.			AG	
	$\angle CAD = 90^{\circ}$ (radius is perpendicular to the	B1			
	tangent)				
	AC = BC radius [=5]	B1			
	Gradient of AC $2-(-1)$ 3				
	$\frac{1}{5-1} = \frac{1}{4}$				
	Equation of AD is $y = 2 - \frac{4}{2}(x - 5)$			Gradient of AD must be found from	
	Equation of AD is $y-2 = -\frac{3}{3}(x-3)$			the coordintes of A and C	
	So coordinates of D are (8, -2)				
	Hence $BD = 5$ and $AD = 5$	B 1		Complete proof	
	So ABCD is a rhombus				

Question	Answer	Marks	AOs		Guidance
(iv)	E is the point (1, -6)	B1	2.1	May be implied	
	EITHER C (1, -1) θ B (4, -5) $\theta = \arctan\left(\frac{3}{4}\right) = 0.6435$ OP	M1 A1	3.1a 3.1a	Right-angled triangle formed and use of arctan oe	
	$BE = \sqrt{(4-1)^2 + (-5-(-6))^2} = \sqrt{10}$ Cosine rule in triangle BCE $\cos BCE = \frac{5^2 + 5^2 - 10}{2 \times 5 \times 5} \left[= \frac{40}{50} \right]$ $\angle BCE = 0.6435$ OR M is the midpoint of BE M is (2.5, -5.5) $BM = \sqrt{(4-2.5)^2 + (-5-(-5.5))^2} = \frac{1}{2}\sqrt{10}$	(M1) (A1)		Using distance BC and the cosine rule oe	
	$\angle BCM = \arcsin\left(\frac{\frac{1}{2}\sqrt{10}}{1}\right) = 0.32175$	(M1)		Using trig in triangle BCM or ECM	
				Allow for $\angle BCM$	
	$\angle BCE = 0.6435$	(A1)		Oe. Must be $\angle BCE$	
	Area sector = $\frac{1}{2}r^2\theta = \frac{1}{2} \times 25 \times 2 \times 0.32175$ = 8.04376	M1dep A1 [5]	1.1a 1.1b	Using the sector area formula FT their $\angle BCM$	