Question		Answer	Marks	AOs		Guidance
13	(i)	$f'(x) = \frac{1}{3} \left(27 - 8x^3 \right)^{-\frac{2}{3}} \times (-24x^2)$ $\left[= \frac{-8x^2}{\left(27 - 8x^3 \right)^{\frac{2}{3}}} \right]$	M1 A1	1.1a 1.1	Using the chain rule Allow unsimplified	
		$f'(1.5) = -\frac{8 \times 1.5^2}{0}$ and dividing by zero zgives the error.	E1 [3]	2.4	Sufficient to say "can't divide by zero" oe	
	(ii)	$(27-8x^3)^{\frac{1}{3}} = 27^{\frac{1}{3}} \left(1-\frac{8}{3}x^3\right)^{\frac{1}{3}}$	B1	3.1 a	Dealing with the 27 correctly	
		$= 3 \left(1 + \left(\frac{1}{3}\right) \left(-\frac{8x^3}{27}\right) + \frac{\left(\frac{1}{3}\right) \left(-\frac{2}{3}\right)}{2!} \left(-\frac{8x^3}{27}\right)^2 + \dots \right)$	M1	1.1a	Using the Binomial expansion substantially correctly	
		$=3-\frac{8x^3}{27}-\frac{64x^6}{2187}+\dots$	A1 [3]	1.1b	Cao	
	(iii)	The binomial expansion is valid for $\left -8\frac{x^3}{27}\right < 1$ x < 1.5 and the limits of the integral are completely in this interval.	B1 E1 [2]	2.4 2.3	Allow unsimplified but must use correct modulus notation or equivalent Must indicate that the limits of the integral lie in their interval for which the expansion is valid.	
	(iv)	$\frac{0.25}{2} (3 + 2.6684 + 2(2.9954 + 2.9625 + 2.8694))$	B1 M1	1.1a 1.1b	h = 0.25 used For sum in the bracket – condone one slip.	Values from candidates own calculators may differ in the last decimal place.
		$=\frac{0.25}{2} \times 23.3224 = 2.9153$	[3]	1.1b		
	(v)	There is area between the curve and the top of the trapezia, so some area is missing from the estimate.	E1 [1]	2.4	Allow for any sensible explanation eg the trapezia are under the curve	"The curve is concave downwards" on its own is not quite enough