6	(a)	$\begin{aligned} & \text { LHS }=\frac{\sin ^{2} \theta-(1-\cos \theta)}{(1-\cos \theta) \sin \theta} \\ & =\frac{\left(1-\cos ^{2} \theta\right)+\cos \theta-1}{(1-\cos \theta) \sin \theta} \\ & =\frac{\cos \theta(1-\cos \theta)}{\sin \theta(1-\cos \theta)} \\ & =\cot \theta \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	$\begin{aligned} & 2.1 \\ & 2.1 \\ & 2.1 \\ & 2.1 \end{aligned}$	Attempt to write LHS as a single fraction Use of identity $\sin ^{2} \theta=1-\cos ^{2} \theta$ Algebraic manipulation eg factorising the numerator AG Complete proof	Where candidates manipulate the entire statement, allow M1 for eliminating or combining fractions eg multiplying through by $(1-\cos \theta) \sin \theta$ M1 for algebraic manipulation leading to a known identity B1 identity obtained. A1 Complete proof
		Alternative solution $\frac{\sin \theta}{(1-\cos \theta)} \frac{(1+\cos \theta)}{(1+\cos \theta)}=\frac{\sin \theta(1+\cos \theta)}{\sin ^{2} \theta}$ So LHS becomes $\frac{(1+\cos \theta)}{\sin \theta}-\frac{1}{\sin \theta}=\frac{\cos \theta}{\sin \theta}=\cot \theta$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$		Attempt to change the denominator of the fraction Use of trig identity Combining the fractions AG Complete proof	
6	(b)	$\begin{aligned} & \text { Uses } \frac{1}{\tan \theta}=3 \tan \theta \\ & \tan \theta= \pm \frac{1}{\sqrt{3}} \\ & \theta=\frac{\pi}{6}, \frac{5 \pi}{6} \end{aligned}$	M1 M1 A1 [3]	1.1a 1.1a 1.1b	soi. Also allow for equivalent equation in $\cot \theta$ Method must be clearly using the given answer in (a) Do not allow if additional answers in the interval; ignore additional values outside the interval.	Allow positive root only for second M mark

