6	(a)	$LHS = \frac{\sin^2 \theta - (1 - \cos \theta)}{(1 - \cos \theta) \sin \theta}$ $= \frac{(1 - \cos^2 \theta) + \cos \theta - 1}{(1 - \cos \theta) \sin \theta}$ $= \frac{\cos \theta (1 - \cos \theta)}{\sin \theta (1 - \cos \theta)}$ $= \cot \theta$	M1 B1 M1 A1 [4]	2.12.12.12.1	Attempt to write LHS as a single fraction Use of identity $\sin^2 \theta = 1 - \cos^2 \theta$ Algebraic manipulation eg factorising the numerator AG Complete proof	Where candidates manipulate the entire statement, allow M1 for eliminating or combining fractions eg multiplying through by $(1-\cos\theta)\sin\theta$ M1 for algebraic manipulation leading to a known identity B1 identity obtained. A1 Complete proof
		Alternative solution $\frac{\sin\theta}{(1-\cos\theta)} \frac{(1+\cos\theta)}{(1+\cos\theta)} = \frac{\sin\theta(1+\cos\theta)}{\sin^2\theta}$ So LHS becomes $\frac{(1+\cos\theta)}{\sin\theta} - \frac{1}{\sin\theta} = \frac{\cos\theta}{\sin\theta} = \cot\theta$	M1 B1 M1 A1		Attempt to change the denominator of the fraction Use of trig identity Combining the fractions AG Complete proof	
6	(b)	Uses $\frac{1}{\tan \theta} = 3 \tan \theta$ $\tan \theta = \pm \frac{1}{\sqrt{3}}$ $\theta = \frac{\pi}{6}, \frac{5\pi}{6}$	M1 M1 A1 [3]	1.1a 1.1a 1.1b	soi. Also allow for equivalent equation in $\cot \theta$ Method must be clearly using the given answer in (a) Do not allow if additional answers in the interval; ignore additional values outside the interval.	Allow positive root only for second M mark