8	(a)	Arithmetic sequence with $a = 9300$ $a_{10} = a + 9d = 9300 + 9d = 3900$ d = -600 $a_{20} = a + 19d = 9300 - 19 \times 600 = -2100$ [So 20th term is negative]	M1 A1 A1 [3]	3.1a 1.1b 2.1	Using formula for term of AP with values substituted soi Allow for -2100 without comment	eg $d = 600$ stated but later subtracted Also allow for earlier negative term found and comment that 20^{th} is less
8	(b)	S is increasing as long as the extra terms are positive First negative term when $a_n < 0$ $9300 - 600(n-1) < 0 \Rightarrow \frac{9300}{600} < n-1 \Rightarrow n > 16.5$ So maximum sum after 16 terms $S_{16} = \frac{16}{2} (2 \times 9300 - 600(16 - 1)) = 76800$	M1 A1 M1 A1 [4]	3.1a 2.2a 1.1a 1.1b	Attempt to find first negative term with 9300 and their d Allow $n > 16$ or $n \ge 17$ oe Using sum with their n and their d cao	(or last positive term) Also allow M1A1 for establishing $a_{16} = 300$ and $a_{17} = -300$
		Alternative solution $S = \frac{n}{2} (2 \times 9300 - 600(n-1)) [= 9600n - 300n^{2}]$ [To find max <i>S</i> treating <i>S</i> and <i>n</i> as continuous] $\frac{dS}{dn} = 9600 - 600n = 0$ Max sum when $n = 16$ $S_{16} = \frac{16}{2} (2 \times 9300 - 600(16-1)) = 76800$	M1 M1 A1 A1		Using the sum formula with 9300 and their <i>d</i> substituted Setting derivative to zero and solve Allow for $n = 16$ Cao	Also allow M1 for other methods for finding the max A1 for $n = 16$ eg M1A1 for $S_n = k - 300(n - 16)^2$
		Second alternative solution $S_{15} = 76500$ $S_{16} = 76800$ $S_{17} = 76500$ max total is 76800	M1 M1 A1 A1		Using the sum formula with 9300 and their <i>d</i> to find at least two totals Evaluating S_{15} , S_{16} and S_{17} Award for S_{16} as maximum identified from correct working Cao	Allow BC FT their <i>d</i> : three consecutive totals around their maximum eg $d = -540$ needs 17^{th} , 18^{th} , 19^{th} totals