15	(a)	$\int \frac{1}{9.8 - kv} \mathrm{d}v = \int 1 \mathrm{d}t$	M1	3.1 a	Attempt to separate variables and	Allow up to 3M
		$\int 9.8 - kv$ $\int 1 dv$			integrate	marks for an attempt
			A1	1.1b	Correct rearrangement	with an incorrect
		1	A1	1.1b	Correctly integrated – must include	rearrangement.
		$-\frac{1}{k}\ln(9.8-kv) = t+c$			+ <i>c</i> somewhere	
		$9.8 - kv = Ae^{-kt}$				
		9.8 - kV = Ae	M1	1.1a	Attempt to write in the form $v =$	
					(Clearing natural logs; may be done	
		When $t = 0$, $v = 0$ giving $0 = \frac{1}{k}(9.8 - Ae^{-0})$			after evaluation of the constant)	
		, gering o k (110)	M1	3.1a	Using initial conditions leading to a	
		A = 9.8			value for the constant; may be done	
					before clearing logs	
		Hence $v = \frac{9.8}{k} (1 - e^{-kt})$	A1	1.1b	Correct value for A	
		$\frac{1}{k}(1-e)$				
					(or $c = -\frac{1}{k} \ln 9.8$)	
			A1	1.1b	Must be in the form $v =$	
			[7]			
		Alternative using a Further Maths method				
		_				
		$\frac{\mathrm{d}v}{\mathrm{d}t} + kv = 9.8$	M1		Writing in the correct form and	
					using integrating factor	
		Integrating factor $e^{\int P(t) dt} = e^{kt}$	A1		Correct integrating factor	
		$ve^{kt} = \int (9.8e^{kt}) dt = \frac{9.8}{k}e^{kt} + c$	A1		Correct equation	
		$ve^{-1} = \int (9.8e^{-1}) dt = \frac{1}{k}e^{-1} + c$				
		9.8 _kt	M1		Attempt to write in the form $v =$	
		$v = \frac{9.8}{k} + c e^{-kt}$			-	
		~ 98				
		When $t = 0$, $v = 0$ giving $c = -\frac{9.8}{k}$	M1		Using initial conditions leading to a	
					value for the constant	
		Hence $v = \frac{9.8}{k} (1 - e^{-kt})$	A1		Correct value for <i>c</i>	
		k	A1		Must be in the form $v =$	

15	(b)	$\frac{9.8}{k}$	B1 B1 [2]	1.1b 1.1b	Graph through (0, 0) with the correct general shape or correct for their <i>v</i> . Horizontal asymptote labelled $\frac{9.8}{k}$	Ignore any graph for $t < 0$ Any graph involving \sqrt{t} must be concave
15	(c)	As $t \to \infty$, $v \to \frac{9.8}{k} = 7$	M1	3.4	Recognises the limiting value	Allow M1 for their <i>v</i> used, provided it has
		k = 1.4	A1 [2]	1.1b	Any form from correct <i>v</i>	a non-zero limiting value
		Alternative solution Limiting value when $\frac{dv}{dt} = 0$ $k = \frac{9.8}{7} = 1.4$	M1 A1		Could be implied	
15	(d)	$v = 3.5 \Longrightarrow 1 - e^{-1.4t} = \frac{3.5}{7}$ Hence $-1.4t = \ln 0.5 \Longrightarrow t = 0.495$	B1 [1]	3.4	May substitute in other versions of the equation relating v and t Allow for 0.50 or awrt 0.495	No FT from incorrect expression for <i>v</i>