	esti	Answer	Marks	AOs		Guidance
10	(a)	DR $\frac{\mathrm{d} x}{\mathrm{~d} t}=-2 t^{-3} \text { and } \frac{\mathrm{d} y}{\mathrm{~d} t}=-3 t^{-4}+t^{-2}$ So $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-3 t^{-4}+t^{-2}}{-2 t^{-3}}$ Multiply top and bottom by t^{4} $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-3+t^{2}}{-2 t}=\frac{3-t^{2}}{2 t}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [3] } \\ & \hline \end{aligned}$	2.1 2.1 2.1	Attempt to differentiate both equations Combining derivatives for $\frac{d y}{d x}$ AG Correct derivative in required form.	Note that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\left(-\frac{3}{t^{4}}-\frac{1}{t^{2}}\right) \times\left(-\frac{t^{3}}{2}\right)$
10	(b)	DR tangent parallel when $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{1}{4}$ $\begin{aligned} & \frac{3-t^{2}}{2 t}=-\frac{1}{4} \\ & 4 t^{2}-2 t-12=0 \end{aligned}$ roots $2,\left[-\frac{3}{2}\right]$ [but since $t>0 t=2$] When $t=2, \quad x=\frac{1}{4}, \quad y=\frac{1}{8}-\frac{1}{2}=-\frac{3}{8}$ So the coordinates are $\left(\frac{1}{4},-\frac{3}{8}\right)$	B1 M1 A1 [3]	3.1a 1.1a 1.1	Establishing gradient $-\frac{1}{4}$ Forming and solving quadratic equation. Using the value of t for both coordinates	$y=-\frac{1}{4} x+\frac{1}{4}$ not sufficient on its own Ignore any point based on $t=-\frac{3}{2}$

Question
Answer

Rearrange $t=x^{-\frac{1}{2}}$
2
$\frac{1}{2}$
$=x^{\frac{1}{2}}(x-1)=(x-1) \sqrt{x}$
or equivalent eg $\frac{1}{t}=\sqrt{x}$
M1
1.1
1.1
[3]
factorised form. Allow surd or index form
$y=\frac{1}{\left(\frac{1}{\sqrt{x}}\right)^{3}}-\frac{1}{\left(\frac{1}{\sqrt{x}}\right)}$

Do not allow for
$= \pm(x-1) \sqrt{x}$

