Question		n	Answer	Marks	AOs		Guidance
10	(a)		DR $\frac{dx}{dt} = -2t^{-3}$ and $\frac{dy}{dt} = -3t^{-4} + t^{-2}$	M1	2.1	Attempt to differentiate both equations	
			So $\frac{dy}{dx} = \frac{-3t^{-4} + t^{-2}}{-2t^{-3}}$	M1	2.1	Combining derivatives for $\frac{dy}{dx}$	Note that $\frac{dy}{dt} = \left(-\frac{3}{t} - \frac{1}{t^2}\right) \times \left(-\frac{t^3}{t^3}\right)$
			Multiply top and bottom by t^4 $\frac{dy}{dx} = \frac{-3 + t^2}{-2t} = \frac{3 - t^2}{2t}$	A1 [3]	2.1	AG Correct derivative in required form.	$dx \left(t^4 t^2 \right) \left(2 \right)$
10	(b)		DR tangent parallel when $\frac{dy}{dx} = -\frac{1}{4}$ $\frac{3-t^2}{2t} = -\frac{1}{4}$ $4t^2 - 2t - 12 = 0$ roots 2, $\left[-\frac{3}{2}\right]$ [but since $t > 0$ $t = 2$] When $t = 2$, $x = \frac{1}{4}$, $y = \frac{1}{8} - \frac{1}{2} = -\frac{3}{8}$ So the coordinates are $\left(\frac{1}{4}, -\frac{3}{8}\right)$	B1 M1 A1 [3]	3.1a 1.1a 1.1	Establishing gradient $-\frac{1}{4}$ Forming and solving quadratic equation. Using the value of <i>t</i> for both coordinates	$y = -\frac{1}{4}x + \frac{1}{4}$ not sufficient on its own Ignore any point based on $t = -\frac{3}{2}$

Question			Answer	Marks	AOs		Guidance
10	(c)		DR Rearrange $t = x^{-\frac{1}{2}}$	B 1	3.1 a	or equivalent eg $\frac{1}{t} = \sqrt{x}$	$y = \frac{1}{(1+1)^3} - \frac{1}{(1+1)^3}$
			Substitute $y = \left(x^{-\frac{1}{2}}\right)^{-3} - \left(x^{-\frac{1}{2}}\right)^{-1} = x^{\frac{3}{2}} - x^{\frac{1}{2}}$	M 1	1.1	Attempt to eliminate <i>t</i>	$\left(\frac{1}{\sqrt{x}}\right)$ $\left(\frac{1}{\sqrt{x}}\right)$
			$=x^{\frac{1}{2}}(x-1)=(x-1)\sqrt{x}$	A1 [3]	1.1	factorised form. Allow surd or index form	Do not allow for = $\pm (x-1)\sqrt{x}$