Question			Answer	Marks	AOs		Guidance
14	(a)		$\begin{aligned} & h_{\max }=5.15+3.4 \times 1=8.55 \\ & h_{\min }=5.15-3.4 \times 1=1.75 \end{aligned}$ These are the correct h values for high and low tide	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	3.4	Choosing $\cos t= \pm 1$ to give both values must be seen Allow without further comment	Allow for using given h values to find $\cos t= \pm 1$ only if there is a comment that these are max and min values for $\cos t$
14	(b)	(i)	When $t=1$ $8.55=5.15+3.4 \cos (a+b)$ So $\cos (a+b)=1$ giving $a+b=0$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	3.3	Correctly relating high tide, $t=1$ and $\cos 0$	Accept 8.55 or $\cos t=1$ as evidence of high tide
14	(b)	(ii)	Minimum when $(a t+b)=180^{\circ}$ and $t=7 \frac{1}{3}$ So $\frac{22}{3} a+b=180$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	3.3	Condone the use 7.2 hours here	Allow for $1.75=5.15+3.4 \cos \left(\frac{22}{3} a+b\right)$
14	(b)	(iii)	Solve simultaneously to give $a=28.42 \text { to } 2 \mathrm{dp}$	M1 A1 [2]	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	Attempt to solve simultaneous equations: may be $\mathbf{B C}$ AG (value of b not needed here)	[$b=-28.42]$
14	(c)		Substitute $h=3$ $\begin{aligned} & 3=5.15+3.4 \cos (28.4 t-28.4) \\ & \cos (28.4 t-28.4)=-\frac{43}{68} \\ & 28.4 t-28.4=129.2, \quad 230.8 \\ & t=5.55, \quad 9.13 \end{aligned}$ He does not sail between 5.33 am and 9.08 am	M1 A1 A1 [3]	3.4 3.4 3.2a	Attempting to solve trig equation or inequality At least one correct [decimal] value for t Both times correct. Need not convert to hours and minutes. Must indicate between these times	

