Question		Answer	Marks	AOs	Guidance	
7	(a)	DR Midpoint of AB is $(3,1)$ Centre C of the circle is $(3,1)$ and radius $\sqrt{(7-3)^{2}+(-2-1)^{2}}=5$ So circle is $(x-3)^{2}+(y-1)^{2}=25$	B1 M1 M1 A1 [4]	$\begin{gathered} \text { 3.1a } \\ \text { 3.1a } \\ \text { 1.1b } \\ \text { 1.1b } \end{gathered}$	soi Attempt to find length of AB, AC or BC Uses their midpoint and radius (do not allow for diameter used) Need not be simplified	
7	(b)	DR Crosses $y=2 x+5$ where $\begin{aligned} & (x-3)^{2}+(2 x+5-1)^{2}=25 \\ & 5 x^{2}+10 x=0 \text { giving } x=-2,0 \end{aligned}$ So points are $(-2,1)$ and $(0,5)$	$\begin{aligned} & \text { M1 } \\ & \\ & \mathbf{A 1} \\ & \mathbf{A 1} \\ & {[3]} \end{aligned}$	$\begin{aligned} & \text { 1.1b } \\ & \text { 1.1b } \\ & \text { 1.1b } \end{aligned}$	Substituting $y=2 x+5$ and attempting to collect terms oe Both values correct Correct y coordinates FT their x coordinates	Allow for a quadratic solved BC providing it is seen in form $\begin{aligned} & a x^{2}+b x=0 \text { or } \\ & a y^{2}+b y+c=0 \end{aligned}$
7	(c)	DR $\mathrm{AQ}=\sqrt{2}$ and $\mathrm{BQ}=\sqrt{7^{2}+7^{2}}=7 \sqrt{2}$ Triangle ABQ has a right angle at Q (angle in a semicircle) So area of triangle is $\frac{1}{2} \times A Q \times B Q$ Area $=7$	M1 M1 A1 [3]	$\begin{gathered} \text { 3.1a } \\ 2.1 \\ 1.1 \mathrm{~b} \end{gathered}$	Attempt to find two lengths to be used in their area calculation (excluding AB) Correct method for finding the area FT their Q	Note $\mathrm{QAB}=81.9^{\circ}$ and $\mathrm{QBA}=8.1^{\circ}$

