Question		n	Answer	Marks	AOs	Guidance	
11	(a)		$\frac{dV}{dt} = \frac{k}{x}$ When $t = 0$, $x = 5$ and $\frac{dV}{dt} = 21$, so $\frac{dV}{dt} = \frac{105}{x}$	M1 A1	3.3 3.3	Expresses inverse proportionality with a constant Evaluating k , oe (may be done later)	
			$\frac{\mathrm{d}V}{\mathrm{d}x} = 4\pi x^2 ,$	B1	2.1	may be embedded in chain rule	
			so the chain rule gives $\frac{dV}{dt} = \frac{dV}{dt} \times \frac{dx}{dt} = 4\pi x^2 \frac{dx}{dt}$	M1	2.1	Use of the chain rule	
			$\frac{dt}{dt} = \frac{dx}{dt} = \frac{1}{4\pi x^2} \times \frac{105}{x} = \frac{105}{4\pi x^3} AG$	A1 [5]	3.3	Convincing argument	
11	(b)		$\int 4\pi x^3 \mathrm{d}x = \int 105 \mathrm{d}t$	M1	3.1 a	Separating the variables	
			$\pi x^4 = 105t + c$	A1	1.1b	Condone missing $+c$ here	
			When $t = 0$, $x = 5$ so $c = 625\pi$	M1	3.3	Using initial conditions	
				A1	3.3	Correct value for <i>c</i>	
			When $t = 120 \ x = 4 \sqrt[4]{\frac{105}{\pi} \times 120 + 625} = 8.25 \ \text{cm}$	A1 [5]	3.4	сао	
11	(c)		As <i>t</i> gets very large, the volume gets very large so the	E1	3.5b	Conveys the idea that	
			balloon will get beyond the maximum it can be without			$t \to \infty \Longrightarrow V \to \infty \text{ or } x \to \infty$	
			bursung and so burst.	[1]		Indicates a practical problem with very large volume	