Question		Answer	Marks	AOs	Guidance	
11	(a)	$\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{k}{x}$ When $t=0, x=5$ and $\frac{\mathrm{d} V}{\mathrm{~d} t}=21$, so $\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{105}{x}$ $\frac{\mathrm{d} V}{\mathrm{~d} x}=4 \pi x^{2}$ so the chain rule gives $\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t}=4 \pi x^{2} \frac{\mathrm{~d} x}{\mathrm{~d} t}$ Hence $\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{1}{4 \pi x^{2}} \times \frac{105}{x}=\frac{105}{4 \pi x^{3}}$ AG	M1 A1 B1 M1 A1 [5]	3.3 3.3 2.1 2.1 3.3	Expresses inverse proportionality with a constant Evaluating k, oe (may be done later) may be embedded in chain rule Use of the chain rule Convincing argument	
11	(b)	$\begin{aligned} & \int 4 \pi x^{3} \mathrm{~d} x=\int 105 \mathrm{~d} t \\ & \pi x^{4}=105 t+c \end{aligned}$ When $t=0, x=5$ so $c=625 \pi$ When $t=120 \quad x=\sqrt[4]{\frac{105}{\pi} \times 120+625}=8.25 \mathrm{~cm}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[5]} \end{gathered}$	$\begin{gathered} \hline \text { 3.1a } \\ \text { 1.1b } \\ 3.3 \\ 3.3 \\ \\ \hline 3.4 \end{gathered}$	Separating the variables Condone missing $+c$ here Using initial conditions Correct value for c cao	
11	(c)	As t gets very large, the volume gets very large so the balloon will get beyond the maximum it can be without bursting and so burst.	E1 [1]	3.5b	Conveys the idea that $t \rightarrow \infty \Rightarrow V \rightarrow \infty \text { or } x \rightarrow \infty$ Indicates a practical problem with very large volume	

