Question		Answer	Marks	$\begin{gathered} \hline \text { AO } \\ \hline 1.1 \mathrm{~b} \\ \text { 1.1b } \end{gathered}$	Guidance	
3	(a)				General shape with horizontal asymp Allow if asymptote not drawn provid Must be a one-to-one function y-values $\pm \frac{\pi}{2}$ seen	the intention is clear
3	(b)	DR Graphs intersect when $3 \sin x \cos x=\cos ^{2} x$ Either $\cos x=0$ giving $x=-\frac{\pi}{2}, \frac{\pi}{2}$ or $3 \sin x=\cos x$ giving $\tan x=\frac{1}{3}$ $x=0.322, x=-2.82 \text { to } 3 \text { s.f. }$ When $x=0.322$ or $x=-2.82 \quad y=0.9$ [So the points of intersection are $\left.(0.322,0.9),(-2.82,0.9)\left(-\frac{\pi}{2}, 0\right),\left(\frac{\pi}{2}, 0\right)\right]$	M1 M1 A1 M1 A1 A1	1.1a 1.1b 2.1 2.1 2.1 2.1	soi Attempt to solve $\cos x=0$ Both values in radians needed Both values in radians to at least 2 s.f. needed. Do not award if additional values inside the interval $[-\pi, \pi]$ Ignore additional values outside the interval $[-\pi, \pi]$. Allow awrt 0.90	Allow for $x=\tan ^{-1} \frac{1}{3}$ SC1 award for 18.4° and -161.6° if 90° already seen Notice 0.9 is exact.

Alternative method
DR
Graphs intersect when $3 \sin x \cos x=\cos ^{2} x$
Either $\cos x=0$
giving $x=-\frac{\pi}{2}, \frac{\pi}{2}$
Or $3 \sin x=\cos x$
Squaring gives
$9 \sin ^{2} x=\cos ^{2} x=1-\sin ^{2} x$
$10 \sin ^{2} x=1$
$\sin x= \pm \sqrt{0.1}$
$x=-2.820,-0.322,0.322,2.820$
Select genuine roots $0.322,-2.820$
When $x=0.322$ or $x=-2.82 \quad y=0.9$
[So the points of intersection are
$\left.\left(-\frac{\pi}{2}, 0\right),\left(\frac{\pi}{2}, 0\right),(0.322,0.9),(-2.820,0.9)\right]$
1.1b
soi

Both values in radians needed

Complete method for finding at least one value for $\sin x$
Both correct roots and no others in the
range
Allow awrt 0.90

