	Question		Answer	Marks	AO	Guidance
8	(a)		$\frac{\mathrm{d}x}{\mathrm{d}t} = 3t^2 - 8$, $\frac{\mathrm{d}y}{\mathrm{d}t} = 2t$	M1*	1.1a	attempt to differentiate both parametric equations
			dt dt			Only allow for a complete method for finding $\frac{dy}{dx}$ in terms of t using
						the cartesian equation of the curve
			$\frac{dy}{dt} = \frac{2t}{2t}$	M1	1.1b	Combine their derivatives to find $\frac{dy}{dy}$ Do not allow for reciprocal
			$dx 3t^2 - 8$	(dep)		$\frac{dx}{dx}$
				A1	1.1b	cao
				[3]		
8	(b)		AG $t^3 - 8t = 8$ and $t^2 = 4$ gives $t = -2$	M1	3.1a	Attempt to establish the value of t at (8, 4). Allow for ± 2 or 2 stated
						Allow for $y = 4$ used in $\frac{dy}{dx} = \frac{2\sqrt{y}}{3y-8}$ for the M mark only
			$\frac{dy}{dx} = \frac{2(-2)}{3(-2)^2 - 8} = -1$	E1	1.1b	\mathbf{AG} the negativity must be clearly established from correct working
			Alternative When $\frac{dy}{dx} = \frac{2t}{3t^2 - 8} = -1$ giving $3t^2 + 2t - 8 = 0$	M1		Uses the value of the derivative to find the value of <i>t</i> at P.
			$t = \frac{4}{3}$ or $t = -2$ When $t = -2$ the coordinates are $((-2)^3 - 8(-2), (-2)^2) = (8, 4)$ [which is P]	E1		Allow without reference to $t = \frac{4}{3}$
				[2]		
8	(c)		$\frac{dy}{dx} = \frac{2t}{3t^2 - 8} = -1 \text{ giving } 3t^2 + 2t - 8 = 0$	M1	1.1 a	Equating their $\frac{dy}{dx}$ to -1 and rearranging to form quadratic equation
			$t = \frac{4}{3}$ or $[t = -2$ is the point P]	A1	3.2a	allow www -2 need not be seen but if seen must be rejected
				L-J		

5	(d)		Substitute $t^2 = y$	M1	1.1 a	
			$x = t^3 - 8t \Longrightarrow x^2 = t^6 - 16t^4 + 64t^2$	A1	1.1b	Allow for $x^2 = t^2 (t^2 - 8)^2$
			$\Rightarrow x^2 = y^3 - 16y^2 + 64y$	A1	2.1	
			Alternative method			
			Substitute $t = \pm y^{\frac{1}{2}}$	M1		Substituting for <i>t</i> in their equation for <i>x</i> ; allow without $\frac{1}{2}$
			$x = \pm \left(y^{\frac{3}{2}} - 8y^{\frac{1}{2}} \right)$	A1		Soi Allow without \pm
		$x^{2} = y(y-8)^{2} = [y^{3}-16y^{2}+64y]$	A1		must be in the form $x^2 = \dots$ from fully correct working	
					Need not be simplified. Do not award if $\frac{1}{2}$ not seen at all	
				[3]		