

Marks
AO
Guidance

Alternative method

$l^{2}=30^{2}+15^{2}-2 \times 30 \times 15 \cos \theta$
$l^{2}=1125-900 \cos \theta$
$2 l \frac{\mathrm{~d} l}{\mathrm{~d} \theta}=900 \sin \theta$

$$
\frac{\mathrm{d} \theta}{\mathrm{~d} t}=0.1
$$

$$
\frac{\mathrm{d} l}{\mathrm{~d} t}=\frac{\mathrm{d} l}{\mathrm{~d} \theta} \times \frac{\mathrm{d} \theta}{\mathrm{~d} t}=\frac{450 \sin \theta}{l} \times 0.1
$$

When $\theta=\frac{\pi}{3} \frac{\mathrm{~d} l}{\mathrm{~d} t}=\frac{45 \sin \frac{\pi}{3}}{15 \sqrt{3}}=\frac{3}{2}$
$1.5 \mathrm{~cm} \mathrm{~s}^{-1}$

Attempt to use the implicit
differentiation. Any form
soi

Using the chain rule to find $\frac{\mathrm{d} l}{\mathrm{~d} t}$
Substitute $\theta=\frac{\pi}{3}$ into their $\frac{\mathrm{d} l}{\mathrm{~d} \theta}$

Must have correct unit for the value Allow written as cm per second oe

If working in metres
$=0.1125-0.0900 \cos \theta$

