Question	Answer	Marks	AO	Guidance	
11	Let $u = 2x + k$ $2dx = du$	M1	2.1	Substituting $u = 2x + k$	Allow for $\int \frac{a}{du} du$ for any
				Allow for a different substitution	$\int u^2 du$ for any
				giving an integral in <i>u</i> only	constant seen
	$\begin{bmatrix} 2 & 1 & 1 \end{bmatrix}$	A1	2.1	Correct integrand in terms of <i>u</i>	
	$\int \frac{1}{\left(2x+k\right)^2} \mathrm{d}x = \int \frac{1}{u^2} \mathrm{d}u$			Ignore limits	
	$=$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	A1	2.1	correct indefinite integral	
	$\begin{array}{c}[+c] \\ u \end{array}$			constant need not be seen	
	$\int_{-2k}^{2k} 2 = \int_{-5k}^{5k} (1) = 1 = 1$	M1	2.1	substituting correct new limits into	
	$\int \frac{1}{(2\pi + h)^2} dx = \int \frac{1}{(\mu^2)^2} du = -\frac{1}{5k} + \frac{1}{3k}$			their integrated expression, or	
	$J_k(2x+k)$ $J_{3k}(u)$ $J_{3k}(u)$			substituting in terms of x and using	
				original limits	
	Alternatively, by inspection	MI		Internating by increasion to obtain any	
	$\int_{-\infty}^{2k} \frac{2}{(2r+k)^{-1}} dr = \left[-(2r+k)^{-1} \right]^{2k}$	IVII		Integrating by inspection to obtain any $(2 - 1)^{-1}$	
	$\int_{k} (2x+k)^{2} dx = \left[(2x+k) \right]_{k}$			multiple of $(2x+k)$	
		A2		Fully correct indefinite integral – need	
				not be simplified.	
	$-\frac{1}{-++-}$	M1		substituting limits into their integrated	
	5k $3k$			expression	
	$=\frac{2}{15k}$	A1	2.1	Allow $\left(-\frac{1}{5}+\frac{1}{3}\right)\frac{1}{k}$ seen	
	This is inversely proportional to k	E1	2.2a	FT their definite integral	Allow if a required at
	[with constant of proportionality $\frac{2}{15}$]			Must use phrase "inversely	$\begin{bmatrix} x_{110w} & 1 & - & 1 \\ & k \end{bmatrix}$
				proportional" to k or indicates $\propto \frac{1}{k}$	the start of the argument
		[6]			