Ouestion

Answer

Marks
Guidance
Assume there is a prime number p which is one
Setting up proof by contradiction
less than a square number
$p=n^{2}-1$ for some positive integer $n \geq 2$
$p=(n-1)(n+1)$
If $n=2 \quad p=1 \times 3=3$ which is prime
[$p=2$ is not 1 less than a square number]
If $n>2$ then p has two [proper] factors
so is not prime which is a contradiction. So there are no prime numbers other than 3 which are 1
less than a square number

M1*
2.1

M1*

E1

E1
(dep)
2.1
2.1
2.1 factorising

Condone missing reference to $n=2$ (or $p=3$) for this step.
Conclusion must be clear.
Allow SC1 where M1M0 or M0M0 has been awarded and
$3=2^{2}-1$ is established

