Question		n Answer	Marks	AO	Guidance
12		Assume there is a prime number <i>p</i> which is one	M1*	2.1	Setting up proof by contradiction
		less than a square number			
		$p = n^2 - 1$ for some positive integer $n \ge 2$			
		p = (n-1)(n+1)	M1*	2.1	factorising
		If $n=2$ $p=1\times 3=3$ which is prime	E 1	2.1	Considers the possibility that one factor might be 1
		[p = 2 is not 1 less than a square number]			
		If $n > 2$ then p has two [proper] factors			
		so is not prime which is a contradiction. So there	E1	2.1	Condone missing reference to $n = 2$ (or $p = 3$) for this step.
		are no prime numbers other than 3 which are 1	(dep)		Conclusion must be clear.
		less than a square number			
					Allow SC1 where M1M0 or M0M0 has been awarded and
					$3 = 2^2 - 1$ is established
			[4]		