Question		n	Answer	Marks	AO	Guidance	
14	(a)		When $t = 0$, $82 = \theta_0 e^0$ so $\theta_0 = 82$	B1	3.3		
			$t = 5, 27 = \theta_0 \mathrm{e}^{-5k}$	M1	3.3	Forming an equation for k and attempt to solve	
			giving $k = \left[-\frac{1}{5} \ln \left(\frac{27}{82} \right) \right] = 0.222$ to 3 sf	A1	1.1b	Allow for exact value or evaluated to at least 2 s.f.	
				[3]			
14	(b)		The model predicts that temperature tends to				
			zero but if the quantity of water is small the	E1	3.5b	Must imply to the model tends to zero and this does not match the	
			water will warm up so it will not cool the object			real situation.	
			to zero.				
				[1]			
14	(c)		$\ln\theta = \ln(\theta_0 e^{-\kappa t}) = \ln\theta_0 + \ln(e^{-\kappa t})$	M1	2.1	Taking logs and attempting to use laws of logs	
						Do not award for values of <i>a</i> and <i>b</i> obtained directly from the data	
						and the natural log form of the model.	
			$\ln\theta = \ln 82 - 0.222t = [4.41 - 0.222t]$	Al	2.1	FT their values for θ_0 and k	
						Accept as part of equation or <i>a</i> and <i>b</i> clearly stated	
				[2]			
14	(d)		When $t = 0$, $\ln \theta = 3.4$	-			
			giving $\theta = 29.96$ so 30.0° C to 3 sf	B1	3.4	Accept 30° www Must be evaluated	
			$\theta = 29.96 \mathrm{e}^{-0.08t}$				
			$\frac{\mathrm{d}\theta}{\mathrm{d}t} = 29.96 \times -0.08\mathrm{e}^{-0.08t}$	M1	3.4	Attempt to differentiate their exponential expression for θ	
				A1	3.4	Any form eg $e^{3.4} \times -0.08e^{-0.08t}$ or $-0.08e^{3.4-0.08t}$	
			When $t = 0 \frac{\mathrm{d}\theta}{\mathrm{d}t} = -2.3968$	A1	3.4	Allow for correct negative value for $\frac{d\theta}{dt}$ or a clear statement that	
			[object is cooling by 2.4°per minute]			the rate of cooling is 2.4° per minute. Accept = $-0.08e^{3.4}$	
				[4]			

		Alternative method When $t = 0$, $\ln \theta = 3.4$ giving $\theta = 29.96$ so 30.0° C to 3 sf	B1	3.4	Accept 30° www		
		Differentiate $\ln \theta = 3.4 - 0.08t$ w.r.t t $\frac{1}{\theta} \frac{d\theta}{dt} = -0.08$	M1		Uses implicit differentiation w.r.t t	t <i>t</i>	
		$\frac{d\theta}{dt} = -0.08\theta$ When $t = 0$, $\theta = 29.96$	A1		Correct derivative		
		so $\frac{d\theta}{dt} = -2.3968$	A1		Allow for correct negative value for $\frac{dt}{dt}$	$\frac{9}{4}$ or a clear statement that	
		object is cooling by 2.4° per minute	643		the rate of cooling is 2.4° per minute		
		~	[4]				
14	(e)	Solve simultaneously	M1	3.1b	Attempting to find the intersection of	Could be BC	
		$\ln\theta = 3.4 - 0.08t$			their (c) and the given line		
		$\ln\theta = \ln 82 - 0.222t$					
		gives $t = 7.089$ $t = 7.1$ [7 minutes and 5	A1	3.4	Accept awrt 7.0, 7.1 or 7.2		
		seconds]					
		$\ln\theta = 2.8328$ gives $\theta = 17^{\circ}$ C	A1	3.4	Must be the value for θ		
		Alternative method $82e^{-0.222t} = 30e^{-0.08t}$					
		82 01425	M1		Equate their expressions for		
		$\frac{1}{30} = e^{0.142t}$			temperature and attempts to solve for t		
		t = 7.08 [7 minutes and 5 seconds]	A1		Accept awrt 7.0, 7.1 or 7.2		
		$\theta = 17 \circ C$	A1		Cao		
			[3]				
			[2]				